STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023–2024)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV- CHEMISTRY THIRD SEMESTER

COURSE	: CORE	
PAPER	: MOLECULAR SPECTROSC	COPY
SUBJECT CODE	: 23CH/PC/MS34	
TIME	: 3 HOURS	MAX.MARKS :100

Q. No.	SECTION A	CO	KL
	Answer all the questions(10 x 1 =10 marks)		
1.	The molecule which is IR inactive and Raman active is	CO1	K1
	a) HCl b) N ₂ c) SO ₂ d) protein		
2.	The region of group frequency (IR) for >C=C< stretching is	CO1	K1
	a) 3700-2500cm ⁻¹ b) 2500-2000cm ⁻¹ c) 2000-1600cm ⁻¹ d) 1600-		
	1450cm ⁻¹		
3.	M+2 peaks are observed in the mass spectrum of the compounds	CO1	K1
	containing one of the following elements		
	a) F b) I c) Br d) N		
4.	The natural abundance of ¹³ C is about	CO1	K1
	a) four times less than 1H b) 0.11% of the total carbon		
	c) 1.1% of the total carbon d) 99% of the total carbon		
5.	Which molecular electronic transition requires the most	CO1	K1
	energy?		
	a) $\sigma \rightarrow \sigma^*$) b) $\pi \rightarrow \pi^* c$) $n \rightarrow \pi^* d$) $n \rightarrow \sigma^*$		
6.	What type of 2D-NMR spectrum indicates which carbon atoms	CO1	K1
	are coupled to which hydrogen atoms?		
	a) DEPT b) APT c) COSY d) HETCOR		
7.	The mass spectrum of alcohols often fails to exhibit detectable	CO1	K1
	M peaks, but instead show relatively large peaks		
0	a) M+1 b) M+2 c) M-17 d) M-18	0.01	77.4
8	The nuclear relaxation characterized by T1 relaxation is not	CO1	K1
	a) spin-lattice relaxation b) longitudinal relaxation		
0	c) spin-spin relaxation d) relaxation along z-axis	001	17.1
9.	In the mass spectrum of Benzaldehyde, the base peak is	CO1	K1
	observed at m/e		
10	a) 105 b) 106 c) 77 d) 51	CO1	IZ 1
10.	The ¹⁹ F NMR spectrum of ClF ₃ shows a) doublet and triplet for a T shaped structure	CO1	K1
	a) doublet and triplet for a T-shaped structure		
	b) singlet for a trigonal planar structure		
	c) singlet for a trigonal pyramidal structure		
	d) doublet and singlet for a T-shaped structure.		

Q. No.	SECTION B	CO	KL
	Answer all the questions(10 x 1 =10 marks)		
11.	In NMR spectra for a triplet, the relative peak areas are in the	CO2	K2
	ratio		
12.	An organic compound containing an odd number of nitrogen	CO2	K2
	atoms will have a molecular ion with an mass number		
13.	What is Born-Oppenheimer approximation?	CO2	K2
14.	State Stevenson's rule.	CO2	K2
15	The region of the IR spectrum, which contains the most	CO2	K2
	complex vibrations (600-1400 cm ⁻¹) is called the		
	region of the spectrum.		
16.	The IR spectrum of ethanol (CH ₃ CH ₂ OH) shows strong	CO2	K2
	absorption at 3420(broad), 2922, 2842 and 1050cm ⁻¹ . The band		
	assigned to the OH stretching is		
17.	Arrange the following bonds in the decreasing order of	CO2	K2
	vibrational frequency vC-X		
	C-O, C-I, C-C, C-H, C-Br, C-Cl		
18.	Predict the number of signals in the PMR spectra of the	CO2	K2
	following compounds CH ₃ CH=CH ₂		
19.	Calculate the Double Bond equivalence for $C_{10}H_{14}O$.	CO2	K2
20.	State rule of Mutual Exclusion Principle.	CO2	K2

Q. No.	SECTION C	CO	KL
	Answer any four of the following (4x6 = 24 marks)		
21.	Calculate the λ max for the following compounds	CO3	K3
	(2+2+2) iii.		
22.	a) Why anti-Stokes lines are less intense than Stokes lines?	CO3	K3
	b) Indicate the number of peaks in the off-resonance decoupled ¹³ C NMR spectra 2-butanone (3+3)		
23.	a) What is Fieser Kuhn equation	CO3	K3
	b) Explain the excited and ground state term symbol for		_
	Hydrogen		
24.	a) Distinguish between fundamental vibrations and overtones	CO3	K3
	b) Discuss the various stretching and bending vibrations which		
	arise in the IR spectrum of an aromatic compound. (3+3)		
25.	Outline the advantages of 2D NMR technique.	CO3	K3

Q. No.	SECTION D	CO	K4
	Answer any four of the following (4x 8=32 marks)		
26.	a) Elucidate nuclear overhauser effect.	CO4	K4
	b) Explain McLafferty rearrangement with an example. (4+4)		
27.	a) Discuss the applications of ¹⁹ F and ³¹ P NMR spectroscopic	CO4	K4
	techniques		
	b) Explain why the aldehydic proton appears much downfield in		
	the PMR spectrum (4+4)		
28.	a) Using mass spectrometry how will you distinguish 2-	CO4	K4
20.	pentanone and 3-pentanone?	04	174
	b) Explain vicinal and geminal coupling constants with suitable		
	examples (4+4)		
29.	a) An organic compound of molecular formula C ₈ H ₈ O exhibits	CO4	K4
	m/z 120,105,77,43. Determine the structure of the compound		
	b) Sketch the fundamental modes of Vibration of CO ₂ and		
	predict which modes will be IR active and which		
	will be Raman active. (4+4)		
30.	a) Explain the classical quantum theory of Raman effect	CO4	K4
	.b) Determine the structure of SO ₂ and N ₂ O using Raman		
	Spectroscopy. (4+4)		

Q.No.	SECTION E	CO	KL
	Answer any two of the following (2x 12 = 24 marks)		
31.	a) Assign the structure and justify your answer for the	CO5	K5
	compound of molecular formula $C_9H_{10}O_2$ with the		
	following data		
	UV: λmax:268,264,262 nm IR: v=1745,1225and 749 cm ⁻¹		
	¹ HNMR: δ7.22(5H,s),5.00(s,2H), 1.96(s,3H)		
	MS: m/z 150.		
	b) What is meant by chemical shift? Discuss on the shielding		
	and deshielding of protons (7+5)		
	OR		
	a) An organic compound of molecular formula C ₈ H ₈ O ₂ with		
	the following data		
	Mass: m/z 136,91 and 45		
	UV: λmax:229 and 257nm; IR: v=1710 cm ⁻¹		
	¹ HNMR: δ7.2(s 5H) ,3.5(s,2H) and 10.5(s,1H)		
	b) Explain the following terms:		
	i) base peak ii) isotope peak iii) molecular ion peak. (7+5)		

22		995	
32.	a). The C=O stretching frequencies are as follows	CO5	K5
	$\text{RCONH}_2 \approx 1680 \text{ cm}^{-1}$, $\text{RCOOH} \approx 1715 \text{ cm}^{-1}$, $\text{RCOR} \approx 1725$		
	cm^{-1} , RCHO $\approx 1735 cm^{-1}$, Discuss the trend observed		
	b) The compound having the molecular formula C ₇ H ₈ gave the		
	following PMR data 1.13δ (3H, s) and 7.22δ (5H, s). Assign		
	the structure of the compound		
	c) Explain the solvent effect on π - π * and n- π * transitions in		
	organic compounds (4+4+4)		
	OR		
	a) An organic compound of molecular formula C ₄ H ₈ O exhibits		
	the following IR and NMR spectral data		
	IR: $v=1715$ cm ⁻¹ (s)		
	¹ HNMR: δ1.06(t, 3H) ,2.14(s,3H) and 2.43(q,2H)		
	Deduce the structure of the compound and predict the		
	principal fragment ion for the base peak		
	b) Outline the importance of Stark effect (7+5)		