STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2006 –07 & 2007-08)

SUBJECT CODE: CH/PC/SO34

M.Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH IV- CHEMISTRY THIRD SEMESTER

REG.NO

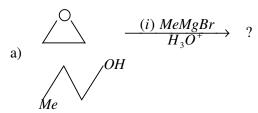
COURSE: MAJOR CORE

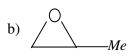
PAPER: SYNTHETIC ORGANIC CHEMISTRY

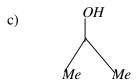
TIME : 30 MINUTES MAX.MARKS : 20

$\begin{array}{c} \text{SECTION} - A & (20x1=20) \end{array}$

ANSWER ON THE QUESTION PAPER ITSELF. Answer all the questions.

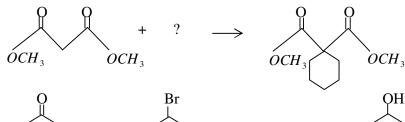

I. Choose the correct answer:


- 1. DCC is used in organic syntheses as
 - a) oxidizing agent


b) reducing agent

c) dehydrating agent

- d) hydroxylating agent
- 2. What is the product in the following reaction?


- d) $CH_2 = CH CH_2OH$
- 3. Which reaction is catalysed by Wilkinson's catalyst?
 - a) Oxidation of aldehydes.
- b) Hydrogenation of alkenes
- c) Oxidation of alkenes
- d) Dehychogenation of cyclic compounds.
- 4. What are the reagents used in Sharpless asymmetric epoxidation?
 - a) Tert-butyl hydroperoxide, a titanium (IV) metal catalyst and a tartrate ester ligand.
 - b) Tert-butyl hydroperoxide and a vanadium (V) catalyst
 - c) m-chloroperbenzoic acid.
 - d) Perbenzoic acid

5. What is the synthetic equivalent of the synthon, ${}^{+}C = O$

- a) HCHO
- b) CO₂
- c) HCOOH
- d) CH₄

6. Fill in the blank with an appropriate reactant.

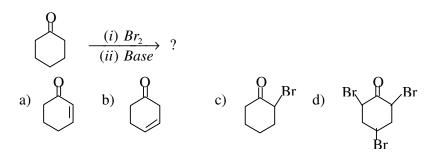
- a) U
- b)
- c) $Br(CH_2)_5 Br$
- d)
- 7. How will you achieve the following conversion?

- a) (i) Na / Liq NH₃
 - (ii) H_3O^+/Δ

- b) (i) H_3O^+/Δ
 - (ii) CrO₃ / AcOH

- c) (i) K₂Cr₂O₇
 - (ii) HOH

- d) (i) CrO₃ / AcOH
 - (ii) H₂/Ni
- 8. Predict the product for the following reaction.


$$R - C \equiv CH \xrightarrow{(i) B_2 H_6} (ii) H_2 O_2 / NaOH ?$$

a)
$$R-C = CH_2$$

 OH

b)
$$R - CH = CH - BH_2$$

c)
$$R-C=CH_2$$

 BH_2

9. What is the product for the following reaction?

- 10. How many enantiomers are possible for menthol?
 - a) 6
- b) 8
- c) 4
- d) 2

II. Fill in the blanks:

11.
$$CH_3 - CH = CHCOOCH_3 \xrightarrow{NBS} ?$$

12.
$$SeO_2 \longrightarrow C$$

- 13. Synthons having reversed polarity are known as ______ synthons.
- 14. The synthetic equivalent of the synthon, ${}^{+}CH_{2}CH_{2}OH$ is ______.
- 15. Addition of Br_2 to methyl acetylene to form trans 1,2 dibromo propene predominantly is a stereo ______ reaction.

III. Answer the following in one or two sentences:

- 16. How does a phase transfer catalyst function?
- 17. How is an aldehyde group protected?

- Give the structure of Thymol and identify whether it is optically active. 18.
- 19. How will you prepare a trans diol from an olefin?
- 20. Explain the following reaction.

$$\underbrace{\begin{array}{c} (i) \ HNO_3 \\ (ii) \ Ac_2O/300^{\circ}C \end{array}}$$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2006–07 & 2007-08)

SUBJECT CODE: CH/PC/SO34

M.Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH IV- CHEMISTRY THIRD SEMESTER

COURSE: MAJOR CORE

PAPER: SYNTHETIC ORGANIC CHEMISTRY

TIME : 2½ HOURS MAX.MARKS : 80

SECTION - B (5x8=40)

Answer any five questions:

1. Discuss the synthetic application of the following reagents.

a) LDA

b) OsO₄

(4+4)

2. Predict the product and explain with mechanism.

a)
$$O$$
 (i) CH_3MgBr ?

b)
$$PhOCH_2 - CH - CH_2OH \xrightarrow{Pb(OAc)_4} ?$$

c)
$$RCOOH + R'OH \xrightarrow{DCC}$$
 ? (2+2+4)

- 3. a) Explain giving two examples, the need for protecting groups in organic syntheses.
 - b) How are the following groups protected and deprotected?

(i)
$$-NH_2$$

(ii)
$$-COOH$$

(4+4)

4. Find out the synthetic equivalents after doing proper netrosynthetic analysis of the following target molecule and then show the forward synthesis using Michael condensation.

$$\bigcup_{O}^{O}$$
(8)

5. Discuss the synthesis of Atropine

(8).

(4+4)

- 6. How will you synthesize the following?
 - a) m Nitrotoluene from toluene

7. a) Discuss the synthetic applications of NBS.

SECTION - C

Answer any two questions.

(2x20=40)

- 8. a) Discuss the synthetic applications of Grignard's reagent and organo copper reagents.
 - b) Give an account of selective aldol condensation. (10+10)
- 9. a) Show the forward synthesis of the following target molecules with netro analysis.

b) Outline the synthesis of Longifolene.

(10+10)

- 10. a) Write notes on
 - (i) Crown ether
 - (ii) Lithium aluminium hydride
 - c) Outline the synthesis of the oxefane ring, D of Taxol.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2004 –05 & thereafter)

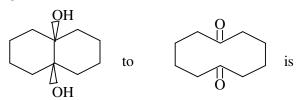
SUBJECT CODE: CH/PC/SO34

M.Sc. DEGREE EXAMINATION, NOVEMBER 2006
BRANCH IV- CHEMISTRY
THIRD SEMESTER
REG.NO

COURSE: MAJOR CORE

PAPER: SYNTHETIC ORGANIC CHEMISTRY

TIME : 20 MINUTES MAX.MARKS : 20


SECTION – A

ANSWER ON THE QUESTION PAPER ITSELF.

Answer all the questions.

IV. Choose the correct answer:

- 1. 1,5 dicarbonyl compound can be synthesized using
 - a) Aldol reaction
- b) Michael reaction
- c) Ozonolysis reaction
- d) Reformatsky reaction.
- 2. The reagent used for the conversion of

- a) SeO₂
- b) Lead tetra acetate
- c) PCC
- d) OsO₄

(20x1=20)

0 0

- 3. Conversion of R C OH to R C R can be achieved using
 - a) R`MgX
- b) R'Li
- c) R₂CuLi
- d) R₂Cd
- 4. Which is the electrophilic reagent used in Wittig reaction.
 - a) Phosphorus ylide

b) Carbonyl Compound

c) Olefin

- d) Alkyl halide
- 5. Conversion of to is achieved using
 - a) DCC
- b) Bu₃SnH
- c) (CH₃)₃SiI
- d) Lewis acid
- 6. Diphenyl acetylene can be reduced to cis-stilbene by using
 - a) Wilkinson Catalyst

b) NaNH₂ / liquid NH₃

c) H₂ / Ni

d) all the above reagents

..2

/2/ CH/PC/SO34

- 7. Number of chiral centres in Taxol is
 - a) 12
- b) 11
- c) 4
- d) 5
- 8. Cyclohexane derivatives are synthesized by
 - a) Michael reaction
 - c) aldol reaction

- b) Diels Alder reaction
- d) none of the above
- 9. Umpolung on carbonyl is achieved using

c)
$$H^{+}$$
 $\left| \begin{array}{c} HS - CH_2 \\ HS - CH_2 \end{array} \right| \stackrel{\bigcirc}{OH}$

$$\begin{array}{c} CH_2-OH \\ d) \\ CH_2-OH \end{array} \bigg| H^{+}$$

10. Reduction of

to COOMe

is carried out using

- a) Diborane
- c) Dibol

- (B) b) Lithium aluminium hydride
- d) Wilkinson's Catalyst

V. Fill in the blanks:

11.
$$O + SeO_2 \longrightarrow$$

(A)

12.
$$O + LiAlH_4 \longrightarrow M$$

13.
$$\downarrow$$
 + B₂H₆ \longrightarrow _____

14.
$$\stackrel{\text{CHO}}{\longrightarrow}$$
 $\stackrel{\text{HS}}{\longrightarrow}$ $\stackrel{+}{\longrightarrow}$ $\stackrel{\text{(1) n-BuLi}}{\longrightarrow}$ (2) CH_3CH_2COCl (3) $HgCl_2$

..3

/3/

CH/PC/SO34

VI. Answer the following in one or two sentences:

15. Give two uses of Thymol.

- 16. Write the structure of Rutin.
- 17. Explain umpolung with an example.
- 18. Give an example of Phase transfer catalyst.
- 19. Mention any one physiological action of digoxin.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2004 –05 & thereafter)

SUBJECT CODE: CH/PC/SO34

M.Sc. DEGREE EXAMINATION, NOVEMBER 2006 BRANCH IV- CHEMISTRY THIRD SEMESTER

COURSE: MAJOR CORE

PAPER: SYNTHETIC ORGANIC CHEMISTRY

TIME : 2 HOURS & 40 MINUTES MAX.MARKS : 80

SECTION - B (5x8=40)

Answer any five questions:

1. Suggest suitable starting materials for the synthesis of the following compounds using Retro-synthetic analysis.

(4x2=8)

- 2. a) Using Suzuki reaction how are the following compounds synthesized?
 - (i) $CH_3 (CH_2)_3 CH = CH CH = CH Ph$

(ii)
$$Ph - CH_2 - CH = CH - Ph$$
 (2x2=4)

- b) Bring out the synthetic utility of DCC in protein synthesis. (4)
- 3. Complete the following reactions

a)
$$Ph - C \equiv C - Cu$$
 + H $Pyridine$ Δ

b)
$$+ O_SO_4 \longrightarrow$$

c)
$$+ DDQ \longrightarrow$$

d)
$$Cr(CO)_3$$
 + Li $C-COOCH_3$ I_2 $Cr(CO)_3$ Me $Coolean Me$ $Coolean Me$ $Coolean Me$

4. How would you effect the following conversions?

a)
$$\sim$$
 CHO \longrightarrow (4)

b)
$$COOMe \longrightarrow CH_2 - Ph$$
 $CH_2 - Ph$
 $CH_2 - Ph$
 OH
 $CH_2 - Ph$
 OH

5. Explain briefly protection and deprotection methods for carboxyl group and hydroxyl group.

(4+4)

- 6. a) How is chirally pure menthol synthesized? (4)
 - b) Predict product (S) in the following reaction.

(i)
$$\bigoplus$$
 \bigoplus \ominus \bigoplus \ominus \bigoplus (2+2=4)

- 7. Suggest methods for the synthesis of the following bifunctional compounds.
 - a) β hydroxy ketone
- b) β keto ester

c) α - hydroxy ester

d) 1, 4 diketone

/3/ CH/PC/SO34

SECTION - C

A	Answer any two questions.		(2x20=40))			
8.	a) Describe the synthesis of		(10)				
	b) Mention the synthetic ap	b) Mention the synthetic application of the following compounds in organic					
	synthesis						
	(i) Ionic liquids	(ii) Wilkinson's Catal	yst				
	(iii) Crown ethers	(iv) (CH ₃) ₃ SiI	(v) SeO ₂				
				(5x2=10)			
9.	a) Explain how McMurry Coupling and Shapiro Coupling remain useful in Taxol						
	synthesis			(10)			
	b) Discuss briefly Mukaiya	ama reaction.		(5)			
	c) Explain with an example	al group helps in	organic				
	synthesis			(5)			
10.	a) Discuss the role of titan	ium tetra isopropoxide in ach	ieving stereo – so	elective			
	epoxidation.			(5)			
	b) Write briefly on the foll	owing:					
	(i) BH ₃ SnH in orga	nic synthesis					
	(ii) Michael reaction	n					
	(iii) Pyridinium chlo	orochromate					
	(iv) Role of any tran	nsition metal in organic synth	esis. (4	1+4+3+4)			