STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2006–07 & 2007-08)

SUBJECT CODE: CH/PC/QG34

d) *m*

M.Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH IV- CHEMISTRY THIRD SEMESTER

REG.NO

COURSE	: MAJOR CORE	
PAPER	: QUANTUM CHEMISTRY AND GROUP THEORY	
TIME	: 30 MINUTES	MAX.MARKS: 20

(20x1=20)SECTION – A

Answer all the questions:

Ι Choose the correct answer :

a) m^{-1}

1.	Which one of the following is a linear operator?			
		h) ain	d	

a) log	b) sin	c) <u> </u>	d) √
		dx	•

2. Choose the function that is not hermitian:

a) $\frac{d}{d}$	b) $\frac{h}{d}$	c) $ih \frac{d}{d}$	d) $\frac{d^2}{d}$
a) $\frac{d}{dx}$	$2\pi i dx$	dx	dx^2

- The term ${}^{3}P$ state can be assigned to the ground state of which atom? 3. a) *Na* c) *Mg* b) *C* d) *Al*
- The SI unit of the wave function of a free particle moving in three dimension 4. is b) $m^{-1/2}$ c) $m^{-3/2}$
- 5. Which one among the following constants has the same unit as that of angular momentum?
 - a) Molar gas constant (R) b) Boltzmann constant (k) c) Planck's constant (h) d) Stefan-Boltzmann constant (σ)
- 6. The operator for the x - component of kinetic energy (T_x) of a system is

a)
$$-\frac{h^2}{8\pi^2 m}\frac{\partial}{\partial x}$$
 b) $-\frac{h^2}{8\pi^2 m}\frac{\partial^2}{\partial x^2}$ c) $-\frac{h}{8\pi i}\frac{\partial}{\partial x}$ d) $-\frac{h}{2\pi i}\frac{\partial}{\partial x}$

- The symmetry operation S_6^2 is equivalent to 7. c) C_3^2 a) S_3^1 b) E d) C_3^1
- Which one of the following molecules belongs to $D_{\rm 2d}$ point group? 8. a) Naphthalene b) Ferrocene c) Allene d) Benzene
- 9. In $C_{2\nu}$ point group the product $C_2 \sigma_{xz}$ is equal to b) C_2 a) *E* d) $\sigma_{_{xz}}$ c) $\sigma_{_{_{VZ}}}$

..2

10. In which one of the following molecule *IR* active modes are Raman inactive and Raman active modes are *IR* inactive?a) Boric acid b) Boron trifluoride c) trans – dichloroethene d) chloroform

II Fill in the blanks :

- 11. XeF_4 belongs to ______ point group.
- 12. The sum of the square of the characters of any irreducible representation is equal to ______ of the group.
- 13. The symmetries of fundamental modes in H_2O molecule are
- 14. The ionisation potential of Li in au is 0.2. The value of IP in eV is
- 15. The ground state electronic configuration of molybdenum (Z = 42) is

III Answer in a line or two:

- 16. Write the *x*-component angular momentum operator (\hat{L}_{x}) .
- 17. What is inversion operator?
- 18. What is rule of mutual exclusion?
- 19. State Aufbau principle.
- 20. Write the expression for the eigen value of a rigid rotor.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2006– 07 & 2007--08)

SUBJECT CODE: CH/PC/QG34 M.Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH IV- CHEMISTRY THIRD SEMESTER

COURSE	: MAJOR CORE	
PAPER	: QUANTUM CHEMISTRY AND GROUP THEORY	,
TIME	: 2½ HOURS	MAX.MARKS: 80

SECTION – B (5 x 8 = 40)

Answer any five questions :

- 1. State and explain Heisenberg's uncertainty principle. Calculate the uncertainty in velocity of an electron $(m = 9.1 \times 10^{-31} kg)$ that can be located with an accuracy of 0.01 nm.
- 2. State the postulates of quantum mechanics.
- 3. Apply perturbation theory to helium atom and obtain its energy in the ground state.
- 4. Explain Russel-Saunders coupling. Illustrate with two examples, how it can be applied to get the term symbols.
- 5. Write the ground state wave function for helium atom in the determinantal form and explain Pauli exclusion principle.
- 6. Write the group multiplication table for $C_{3\nu}$ point group. Is it an abellian group?
- 7. Construct the character table for $C_{2\nu}$ point group.
- 8. The reducible representation for a square planar molecule AB_4 is given below.

D_{4h}	E	2C ₄	C ₂	2C ₂ ′	2C ₂ "	i	2S ₄	$\sigma_{_h}$	$2\sigma_v$	$2\sigma_d$
Γred	15	1	-1	-3	-1	-3	-1	5	3	1

Break it into irreducible representation and obtain the symmetries of modes of vibration in AB₄. Predict their IR and Raman activity. (use of character table for D_{4h} is allowed)

SECTION – C $(2 \times 20 = 40)$

Answer any two questions:

- 9. a) Show that the wave function $\Psi_{(x,y,z)} = \sin ax \sin by \sin cz$ (where a,b,c are constants) is an eigen function for Laplacian operator. Find the eigen value. (6)
 - b) Write the Schrodinger wave equation for a free particle moving in three dimension and solve it for the eigen value and eigen function. Explain quantum mechanical degeneracy. (14)

- /2/
- 10. a) State the Great Orthogonallity theorem. Write any two properties of the representation. (8)
 - b) Apply group theory to find out the symmetries of normal modes of vibration in BF_3 and find out which of item are IR and Raman active. (use of character table for D_{3h} is allowed) (12)
- 11. Set up Schröedinger equation for a simple harmonic oscillator and solve it for the eigen value and eigen function of the oscillator. What is meant by zero point energy of the oscillator. (20)