STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2023 – 2024)

M.A / M. Sc. DEGREE EXAMINATION, NOVEMBER 2024 THIRD SEMESTER

COURSE	: ELECTIVE
PAPER	: INTRODUCTION TO BIOINFORMATICS
SUBJECT CODE	: 23BI/PE/IB23
TIME	: 3 HOURS

MAX. MARKS:100

Q. No.	SECTION A	CO	KL
	ANSWER ALL. (10X1=10)		
1.	 Which of the following pairs of amino acids are correctly matched with their single-letter codes? a) Glycine - G; Lysine - L b) Aspartic acid - D; Leucine - L c) Serine - S; Arginine - A d) Alanine - A; Tryptophan - W 	CO1	K1
2.		CO1	K1
2.	Which of the following is a commonly used biological data format for storing sequence data? a) FASTA b) JPEG c) XML d) CSV	COI	K1
3.	 What does the acronym BLAST stand for in bioinformatics? a) Basic Local Alignment Search Tool b) Biological Local Alignment Sequence Tool c) Bioinformatics Local Alignment Search Tool d) Basic Local Alignment Sequence Test 	CO1	K1
4.	 What is PyMOL primarily used for in the field of bioinformatics? a) DNA sequencing b) Molecular visualization c) Protein structure prediction d) Gene expression analysis 	CO1	K1
5.	Which type of phylogenetic tree includes a common ancestorat the base?a) Rooted treeb) Unrooted treec) Circular treed) Linear tree	CO1	K1
6.	 What is the main purpose of evolutionary analysis in biology? a) To determine the environmental impact on species b) To understand the genetic basis of traits c) To infer the relationships and divergence among species d) To classify organisms based on their physical characteristics 	CO1	К2
.7	 Which of the following methods is commonly used for gene finding based on homology? a) Gene prediction algorithms b) Hidden Markov Models (HMMs) c) Comparative genomics d) Machine learning approaches 	CO1	К2

	/2/ 23BI/PE /	/2/ 23BI/PE/IB23		
8.	What is the primary purpose of repeat sequence mapping in	CO1	K2	
	genomics?			
	a) To identify novel genes in the genome			
	b) To determine the locations and types of repetitive DNA			
	elements in a genome			
	c) To analyze gene expression levels			
	d) To predict protein structures			
9.	Which component of SDS-PAGE is responsible for	CO1	K2	
	denaturing proteins?			
	a) Gel matrix b) SDS (Sodium dodecyl sulfate)			
	c) Staining dye d) Buffer solution			
10.	What is a common application of restriction enzymes in	CO1	K2	
	genetic engineering?			
	a) DNA replication			
	b) Sequencing DNA			
	c) Cloning DNA fragments into plasmids			
	d) Amplifying DNA through PCR			
Q. No.	SECTION B	CO	KL	
	ANSWER IN ABOUT 50 WORDS. (10X2=20)			
11.	List the symbols used to represent the nucleotides.	CO2	K2	
12.	Classify the biological database.	CO2	K2	
13.	Brief about MSA.	CO2	K2	
14.	List the uses of Visualization tools.	CO2	K2	
15.	Distinguish cladistic and phenetic methods.	CO2	K2	
16.	Give a note on bootstrapping strategies.	CO3	K3	
17.	Define gene and genome.	CO3	K3	
18.	Mention few gene prediction tools.	CO3	K3	
19.	Name the types of restriction enzyme and function.	CO3	K3	
20.	What are the four levels of protein structure?	CO3	K3	
Q. No.	SECTION C	CO	KL	
	ANSWER IN ABOUT 600 WORDS. (4X10=40)			
21.		CO4	K4	
21.	a) Describe the steps and the types of BLAST to interpret the	C04	K 4	
	sequence similarity.			
	(OR) b) How will you utilize the DDP to determine the structure			
	b) How will you utilize the PDB to determine the structure			
22.	and function of the protein?	CO4	K4	
22.	a) Distinguish rooted and unrooted tree in phylogenetic	004	K 4	
	analysis.			
	(OR)			
	b) Comment on the steps involved in Mega software to			
	construct the phylogenetic tree.			

23.	a) Explain in detail about the sequence retrieval system in the	CO5	K5
	NCBI database.		
	(OR)		
	b) What are Repeat sequences and its types? Explain.		
24.	a) Elucidate the steps and importance of SDS-PAGE in	CO5	K5
	protein separation.		
	(OR)		
	b) Classify the protein structure and emphasize its function of		
	proteins.		
Q. No.	SECTION D	CO	KL
	ANSWER IN ABOUT 1200 WORDS. (2X15=30)		
25.	a) Comment on the applications of Bioinformatics in various	CO5	K6
	fields.		
	(OR)		
	b) Elaborate the different methods employed in phylogenetic		
	tree construction.		
	tree construction.		
26.	a) Discuss in detail about the gene prediction methods.	CO5	K6
26.		CO5	K6
26.	a) Discuss in detail about the gene prediction methods.	CO5	K6
