STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2023 – 2024)

M. Sc. DEGREE EXAMINATION, NOVEMBER 2024 BIOINFORMATICS THIRD SEMESTER

COURSE	: CORE	
PAPER	: MOLECULAR MODELIN	G AND COMPUTER AIDED
	DRUG DESIGN	
SUBJECT CODE	: 23BI/PC/MC34	
TIME	: 3 HOURS	MAX. MARKS: 100

Q. NO.	SECTION A (10 X 1=10)	CO	KL
	ALL QUESTIONS TO BE ANSWERED (OBJECTIVE		
	TYPE)		
1.	The chem draw files can be renamed to pdb file using	CO1	K1
	software		
	a) Pymol b) Discovery Studio Visualizer		
	c) Protein Data Bank d) ChemSketch		
2.	The features like 'add Kollman charges' and 'compute	CO2	K2
	gasteiger' are used for		
	a) Ligand b) Protein c) Both a and b d) None	2 01	
3.	Which of the following is NOT used by molecular modelling	CO1	K1
	software packages?		
	a) Relative molecular mass b) Bond angles		
	c) Bond lengths d) Torsion angles		
4.	Which of the following approach is considered under the	CO2	K2
	'Ligand based drug designing'?		
	a) Molecular docking b) QSAR Modeling		
	c) Pharmacophore modeling d) b and c both	~ ~ .	
5.	Lipinski's rule of five is used for	CO1	K1
	a) Docking b) Similarity search		
	c) Drug likeness d) Dynamics simulation	000	17.0
6.	QSAR method involves	CO2	K2
	a) Target structure b) Target properties		
	c) Ligand x-ray structure d) Ligand properties	C01	T 7.1
7.	Which of the following compounds has desirable properties		K1
	to become a drug?		
0	a) Fit drug b) Lead c) Fit compound d) All of the above	CO2	IZO.
8.	AMBER is the force field used for the simulation for the		K2
	following		
	a) Proteins b) Nucleic acids and Proteins		
	c) Carbohydrates d) All of the above	CO1	IZ 1
9.	Lead optimization helps in		K1
	a) Enhancing the most promising compound to improve the		
	toxicity b) Obtaining lower BMSD values		
	b) Obtaining lower RMSD valuesc) Building the target protein model		
	d) Generating the Pharmacophore models		

10.	What does the partition coefficient (P) measure?	CO2	K2
10.	a) The solubility of a solute in a particular solvent	002	112
	b) The distribution of a solute between two immiscible		
	phases		
	c) The rate of diffusion of a solute across a membrane		
	d) The concentration of a solute in a solution		
Q. No.	SECTION B (10 X 2= 20 MARKS)	СО	KL
C	ANSWERS IN ABOUT 50 WORDS		
11.	Hydrogen bond	CO3	K3
12.	Ball and stick model	CO4	K4
13.	Boundaries	CO3	K3
14.	Simplex method	CO4	K4
15.	ADMET	CO3	K3
16.	QSAR	CO4	K4
17.	Drug discovery	CO3	K3
18.	Active site prediction	CO4	K4
19.	Verlet algorithm	CO3	K3
20.	Gibbs free energy	CO4	K4
Q. No.	SECTION C (4 X 10= 40)	CO	KL
	ANSWER IN ABOUT 600 WORDS - INTERNAL		
	CHOICE		
21.	a) Explain the potential energy surface.	CO4	K4
	OR		
	b) Illustrate the Z matrix and Cartesian coordinate systems.		
22.	a) Discuss the significance of computer simulation.	CO5	K5
	OR		
	b) Brief the methods of energy minimization.	~ ~ .	
23.	a) Give a detailed account molecular dynamics at constant	CO4	K4
	temperature and pressure.		
24	b) Describe the De novo drug design.	005	17.5
24.	a) Write about molecular structure representations.	CO5	K5
	OR b) Discuss the melecular descriptors in detail		
O No	b) Discuss the molecular descriptors in detail.	CO	VI
Q. No.	SECTION D (2X 15=30) ANSWER ANY TWO QUESTIONS IN ABOUT 1200	CO	KL
	WORDS		
25.	Elaborate the types of force fields in molecular mechanics.	CO5	K6
26.	Explain the 3D pharmacophore identification and mapping.	CO5	K6
27.	Discuss the concept of molecular docking in detail.	CO5	K6
	Write in brief on Monte Carlo simulation of molecules.	CO5	K6
