	S	TELLA MARIS COLLEO	GE (AUTONO	MOUS), CHE	NNAI			
		COURSE PLAN	(November 20	24 – April 202	25)			
Department: ECONOMICSName/s of the Faculty: Ms. J KAVIYA NIJARITHACourse Title: MATHEMATICAL METHODS FOR ECONOMICSCourse Code: 23EC/AC/MM25ShiftI								
		COUI	RSE OUTCON	AES (COs)				
COs			Descript	ion			CL	
CO1	Understand	I the concepts of linear alge	bra and apply b	basic set of equa	ations in econo	omics	K1	
CO2	Demonstrat	te the use of solving of syst	em of simultan	eous equations	using matrix i	n economics	K2	
CO3	Apply matr	ply matrix and calculus in calculating the interrelationship between various economic variables K3						
CO4	Analyse the	alyse the marginal productivity and cost theory using calculus K4						
CO5	Evaluate us	sing in-depth mathematical	methods to infe	er the nature va	rious tools in e	conomics	K5	
K1 – Remember K2 -	- Understan	Cl d K3 – Apply K4 – Ana	L – Cognitive I lyse K5 – Eva		Create	_	-	
Week	Unit No.							
Nov 18 – 25, 2024 (Day Order 1-6)	1	1.1Definition of the Cartesian system of coordinates, distance formula, coordinates of	K1-K3	5	1-5	Solving problem sums, Peer teaching and group discussion,	Assignment problem, Worksheet, CA, Quiz	

		the point dividing the line joining two points in a given ratio, coordinates of the mid-point.				Solving HOTS questions	
Nov 26- Dec 3, 2024 (Day Order 1 to 6)	1	1.2Equations of straight lines in slope intercept form, slope and a given point form, Xand Y intercept form, two-point form.	K1-K4	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Dec 4-11, 2024 (Day Order 1 to 6)	1	1.3Angel between straight lines and conditions for parallelism and perpendicularism point of intersection of two straight lines	K1-K4	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Dec 12-19, 2024 (Day Order 1 to 6)	1	1.4 Economic applications to lines and angles- demand and supply equations, Application to Linear equations in Basic Macro Economic model- National Income – IS- LM model	K1-K4	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz

		2.1 Various types of matrices. Matrix operations- addition, subtraction, and multiplication					
Dec 20, 2024 (Day Order 1)	2	2.2 Determinants, properties of determinants, solving equations using Cramer's Rule.	K1-K3	1	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Jan 3 – 7, 2025 (Day Order 3 to 6)	2	2.3Matrix inversion and solving equations using inverse of a matrix2.4 Structure of input- output table, Static Leontief system	K1-K3	2	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Jan 8 – 17, 2024 (Day Order 1 to 6)	3	 2.5 Solving open input output models and Hawkin-Simon Condition Unit 3 Differential Calculus 3.1 Variables, constants, and functions 	K1-K3	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz

		3.2 Concept of limits, Continuous and Discontinuous functions (Bais concepts -no derivation)					
Jan 18 - 23, 2025				C.A. Test - I			
Jan 24 -31, 2025 (Day Order 1 to 6)	3	3.3 Definition of derivatives and rules of differentiation. Derivatives of $y=x^n, y = e^x, y$ $= \log x$ (No derivation) 3.4 Function of a function rule, logarithmic, parametric, and implicit differentiation	K1-K4	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Feb 3-8, 2025 (Day Order 1 to 6)	3	 3.5 Derivatives of three variable model 3.6 Partial and Total derivative – Youngs Theorem 3.7 Application to cross partial elasticity – Nature of good – Elasticity 	K1-K5	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Feb 10– 18, 2025	4	Unit 4 Calculus – Economics	K1-K2	3	1-5	Solving problem sums,	Assignment problem,

(Day Order 1 to 4)		Application 4.1 Application to elasticity of demand and supply				Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Worksheet, CA, Quiz
Feb 19- 26, 2025 (Day Order 1-6)	4	 4.2 Relationship between total, marginal and average revenue functions- Derivation and sums 4.3 Relationship between AC and MC- Derivation and sums 	K1-K3 K1-K4	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Feb 27- Mar 6, 2025 (Day Order 1 to 6)	4 5	4.4 Application to AC, MC, MR, MP with two inputs factors.5.1 Increasing and Decreasing functions, interpretation of slope as the first derivative	K1-K4	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz
Mar 7 – 11, 2025 (Day Order 1 to 3)	5	5.2 Concave – Convex functions – interpretation of second order derivative – Nature of the curve	K1-K4	2	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz

Mar 12 –17, 2025		C.A. Test - II								
Mar 18 – 20, 2025 (Day 4 to 6)	5	5.3 Unconstrained maxima and minima with single explanatory variable	K1-K5	2	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz			
Mar 21 - 28, 2025 (Day Order 1 to 6)	5	5.4 Application to cost minimization, revenue maximization	K1-K5	5	1-5	Solving problem sums, Assignment, Worksheet, Peer teaching and group discussion, Solving HOTS questions	Assignment problem, Worksheet, CA, Quiz			
Mar 29- April 2, 2025 (Day Order 1 to 3)				REVISION	•					