STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted from the academic year 2023 – 2024 & thereafter)

B.C.A. DEGREE EXAMINATION, NOVEMBER 2024 FIRST SEMESTER

COURSE : MAJOR CORE

PAPER : DIGITAL LOGIC FNDAMENTALS

SUBJECT CODE: 23CS/MC/DL13

TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION A $(20 \times 1 = 20)$	CO	KL
1.	is a weighted code. A) Gray Code B) ASCII C) 8421 Code D) EBCDIC	CO1	K1
2.	is the 2's complement of the binary number 1011. A) 0101 B) 1101 C) 0110 D) 0100	CO1	K1
3.	boolean expression represents the Exclusive-OR (XOR) function. A) A·B B) A+B C) A⊕B D) (A+B) '	CO1	K1
4.	number of cells are there in four-variable K-map. A) 4 B) 8 C) 16 D) 32	CO1	K1
5.	is a combinational circuit that can perform both addition and subtraction of binary numbers. A) Decoder B) Multiplexer C) Binary Adder-Subtractor D) Encoder	CO1	K1
6.	output lines are present in a 4-to-2 binary encoder. A) 2 B) 4 C) 6 D) 8	CO2	K2
7.	A) 2 B) 4 C) 6 D) 8 is a type of digital counter where all the flip-flops that make up the counter are driven by the same clock signal. A) Ripple Counter B) Asynchronous Counter C) Synchronous Counter D) Decade Counter	CO2	K2
8.	A shift register is primarily used for A) arithmetic operations B) storing multiple bits of data C) shifting data bits serially D) counting clock pulses	CO2	K2
9.	type of memory is non-volatile and used to store firmware. A) RAM B) ROM C) Cache D) Register	CO2	K2
10.	can be used for error detection and correction in memory systems. A) Decoder B) Parity Bits C) Multiplexer D) Shift Register	CO2	K2
11.	is a digital circuit that implements the arithmetic sum of two binary numbers.	CO1	K1

12.	Storage elements that operate with signal levels and said to be level sensitive devices are	CO1	K1
13.	is a type of Asynchronous counter in which the flip-flop output transition serves as a source for triggering other flip-flops.	CO1	K1
14.	RAM stands for	CO1	K1
15.	A is a device that acts as a building block and perform basic logical functions that are fundamental to digital circuits.	CO1	K1
16.	The gray code for the binary number 1011 is	CO2	K2
17.	is a small and temporary storage unit inside a computer CPU.	CO2	K2
18.	is a programming language that's made up of binary numbers that directly instruct a computer's hardware.	CO2	K2
19.	A combinational circuit that converts binary information from n input lines to a maximum of 2 ⁿ unique output lines is	CO2	K2
20.	Thecondition in a K-Map that allows cells to contain either 0s, 1s, or an '*'.	CO2	K2
Q. No.	SECTION B (4 x 5 = 20)	CO	KL
21.	a) Given two binary numbers X = 1010100 and Y =	CO3	K3
	1000011, Solve (X - Y) and (Y - X) using 2's complement. (OR) b) (i) Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal. (ii) Express the following numbers in decimal: (10110.0101) (16.5) 16		
22.	b) (i) Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal. (ii) Express the following numbers in decimal: (10110.0101) (16.5) a) What is duality principle? Write De Morgan's theorem and its duality. Prove both using truth tables. (OR) b) What is a canonical form? Express the Boolean function	CO3	K3
22.	b) (i) Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal. (ii) Express the following numbers in decimal: (10110.0101) ₂ (16.5) ₁₆ a) What is duality principle? Write De Morgan's theorem and its duality. Prove both using truth tables. (OR)	CO3	K3

	SECTION C $(5 \times 12 = 60)$	CO	KL
25.	a) (i) Explain Binary Coded Decimal (BCD) representation. (ii) Perform the addition of 68 and 27 using BCD. (iii) Perform the subtraction of 47 from 95 using BCD. (OR)	CO1	K1
	b) Recall Binary storage and registers.		
26.	a) Explain Two-Variable and Three-Variable K-Map and Simplify the Boolean function, $F(x, y, z) = \sum (2, 3, 4, 5)$ using K-Map.	CO2	K2
	(OR)		
	b) Discuss why digital circuits are often constructed using NAND or NOR gates instead of AND - OR gates, and explain their implementations.		
27.	a) Make use of encoders to explain their functioning in digital systems.	CO3	К3
	(OR)		
	b) Identify and explain the functions of multiplexer in digital circuits.		
28.	a) Compare the master-slave JK flip-flop with a simple JK flip-flop. How do they differ in operation? (OR)	CO4	K4
	b) Sequence the steps involved in the counting process of a 3-bit ripple counter.		
29.	a) Elucidate the functioning of Programmable Logic Array. (OR)	CO5	K5
	b) Examine the input and output devices and their		
	importance in computer systems.		
