STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086 (For Candidates admitted during the academic year 2008 – 2009 & thereafter)

SUBJECT CODE: CS/MC/DB34

REG. NO.:

B.C.A. DEGREE EXAMINATION – NOVEMBER 2011 THIRD SEMESTER

COURSE PAPER TIME					MAX.	MAX. MARKS : 20			
	TO BE ANSWERED ON THE QUESTION PAPER ITSELF:								
I	Chao	e the best answer	Section	A	(20 X 1 = 2)	0)			
1	CHOOS	e the best answer	•						
	1.	users inte (a) Specialized us (d) None of the al	, ,	· · · · · · · · · · · · · · · · · · ·	g programs (c) Sophisti	icated users			
	2.	language	the DML statement piler (b) query too	-					
	3.	An attribute takes (a) Blank	a value w	•					
	4.	entities	raction through wh (b) Aggregation			higher-level generalization			
	5.	depicted pictorial	na along with prima ly by (b) schema diagra						
	6.	The rename opera	tor is denoted by (b) ρ	(c) I	П	(d) σ			
	7.	requires a superkey. (a)1NF	that all nontrivial d	lependencies be of (c) 2NF	of the form α – (d) None of	•			
	8.	A is an a (a) relationship	association among (b) union	several entities (c) intersect	tion (d)	aggregate			
9. Collections of operations that form a single logical u					nit of work are	called			
		(a) Union	(b) Database	(c) transactions	(d) None of	f the above			

/2/ CS/MC/DB34

	10.	0. The updates carried out by the transaction have been written to disk t transaction completes.						
		(a) before	(b) after	(c) None of the above				
II	Fill up	the blanks:						
	11.	1 provide fast access to data items that hold particular values						
	12.	12. A constraint requires that an entity belong to no more than one lower						
	level entity set							
	13. The relational algebra expresses an insertion by							
	14. A domain is if elements of the domain are considered to be indivisible							
		units.						
	15.	A transaction that comple	etes its execution succe	essfully is said to be				
III	Write	True or False:						
	16.	16. The relational model is at a lower level of abstraction than the E-R model.						
	17.	17. Dashed ellipses represent weak entity sets in an E-R diagram						
	18.	Aggregate functions take	a collection of values	and return a single value as a				
		result.						
	19.	We use the alter table con	mmand to add attribute	es to an existing relation				
	20.	The transaction consists of	of all operations execu	ted between the start transaction				
		and end transaction						

STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086 (For Candidates admitted during the academic year 2008 – 2009 & thereafter)

SUBJECT CODE: CS/MC/DB34

B.C.A. DEGREE EXAMINATION – NOVEMBER 2011 THIRD SEMESTER

COURSE : MAJOR CORE

PAPER : DATABASE MANAGEMENT SYSTEMS

TIME : 2 HOURS & 40 MINUTES MAX. MARKS: 80

SECTION-B

 $(8 \times 5 = 40)$

I. Answer any EIGHT questions.

- 1. Briefly explain five main functions of a database administrator.
- 2. Explain the different types of attributes with example.
- 3. Draw the schema diagram for banking enterprise
- 4. What is a trigger? What are the requirements to design a trigger and what is the need for it?
- 5. Define fourth normal form. How it is different from BCNF?
- 6. Write a query to list all dogs who are male and registered or who were born before 1-june-2004 and have white in their color, from the table.

Animal_ID	Category	Gender	Registered	Date born	Color
AID342	Dog	Female	Yes	1-june-2000	White
AID343	Bird	Female	No	1-April-2008	Green
AID345	Dog	Male	Yes	1-June-2004	White
AID346	Cat	Male	Null	1-June-2004	White

- 7. Explain the aggregate functions with example.
- 8. List the ACID properties. Explain the usefulness of each.
- 9. Define Transaction and explain with an example.
- 10. Write short note on DDL commands.

SECTION-C

 $(4 \times 10 = 40)$

II. Answer any FOUR questions.

- 11. Explain three levels of data abstraction with example.
- 12. Explain the different constraints on generalizations
- 13. Explain Cartesian product operation with an example.
- 14. Explain how different relational operations deal with null values.
- 15. Define BCNF with an example. When will you say a relation is in BCNF and write the decomposition algorithm.
- 16. Explain the different states of transaction with a neat diagram.
