STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024)

B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	DIFFERENTIAL EQUATIONS	
SUBJECT CODE	:	23MT/MC/DE34	
TIME	:	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	Find the general solution of $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 8y = 0.$	1	1
2.	Find the particular integral of $(D^2 - 4)y = e^{2x}$.	1	1
3.	How do we reduce linear equations with variable coefficients into a linear equations with constant coefficients.	1	1
4.	Find the complete solution of $p^2 + q^2 = m^2$.	1	1
5.	Write the auxiliary equation of the differential equation $(D^3 - 3D^2D' + 2DD'^2)Z = 0.$	1	1
6.	State Hooke's law.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
7.	The roots of the auxiliary equation $m^3 - 3m + 2 = 0$ is	2	2
	(a) 1, -1, 2 (b) 1, -1, -2 (c) 1, 1, -2 (d) -1, -1, 2		
8.	If $\phi(-\alpha^2) \neq 0$ then P. I. = $\frac{1}{\phi(D^2)} \sin \alpha x$ is	2	2
	$(a)\frac{1}{\phi(\alpha^2)}\sin\alpha x \qquad b)\frac{1}{\phi(-\alpha^2)}\sin\alpha x \qquad (c)\frac{1}{\phi(\alpha^{\Box})}\sin\alpha x \qquad (d)\frac{1}{\phi(-\alpha^{\Box})}\sin\alpha x$		
9.	By the method of variation of parameters a particular solution of a non-	2	2
	homogenous equation can be found when		
	(a) two linearly independent solutions of the homogenous equation are		
	unknown		
	(b) two linearly dependent solutions of the homogenous equation are		
	unknown		
	(c) two linearly independent solutions of the homogenous equation are		
	known		
	(d) two linearly dependent solutions of the homogenous equation are known		

/2/

..2 23MT/MC/DE34

10.	In the differential equation $P \frac{\partial z}{\partial x} + Q \frac{\partial z}{\partial y} + R = 0$ of first order and first		
	degree		
	(a) z is independent and x and y are dependent variables.		
	(b) z is dependent and x and y are independent variables.		
	(c) x is independent and z and y are dependent variables.		
	(d) y is independent and x and z are dependent variables.		
11.	$\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$ is a partial differential equation of order	2	2
	(a) one (b) two (c) three (d) zero		
12.	The equation $Pp + Qq = R$ is called a quasi linear equation. When P, Q, R	2	2
	are independent of Z then it is known as		
	(a) linear equation (b) quadratic equation		
	(c) both (a) and (b) (d) polynomial equation		
13.	For $f(D, D')z = F(x, y)$, if $F(x, y) = e^{ax+by}$ then P. I. =	2	2
	(a) $\frac{e^{ax+by}}{f(-a,-b)}$ (b) $\frac{e^{ax+by}}{f(-a^2,-b^2)}$ (c) $\frac{e^{ax+by}}{f(a^2,b^2)}$ (d) $\frac{e^{ax+by}}{f(a,b)}$		
14.	If the auxiliary equation of $r + 6s + 9t = 0$ is $(m + 3)^2 = 0$ then the	2	2
	complete integral is		
	(a) $z = \phi_1(y - 3x) + x\phi_2(y - 3x)$		
	(b) $z = \phi_1(y + 3x) + x\phi_2(y + 3x)$		
	(c) $z = \phi_1(y - 3x) + \phi_2(y + 3x)$		
	(d) $z = \phi_1(y - 3x) + x\phi_2(y + 3x)$		
15.	The algebraic sum of the voltage drops in a simple closed electric circuit is	2	2
	(a) 1 (b) ∞ (c) $-\infty$ (d) 0		
16.	The equation $F = ma$ where F is a force, m is a mass and a is a	2	2
	acceleration is		
	(a) Newton's first law (b) Newton's second law		
	(c) Newton's third law (d) Hooke's law		

/3/

23MT/MC/DE34

Q. No.	SECTION C $(2 \times 15 = 30)$ Answer ANY TWO questions	CO	KL
17.	An RCL circuit connected in series has a resistance of 5 ohms, an inductance of 0.05 henry, a capacitor of 4×10^{-4} farad and an applied alternating emf of 200 cos 100 <i>t</i> volts. Find an expression for the current flowing through this circuit if the initial current and the initial charge on the capacitor are both zero.	3	3
18.	(i) Solve the equations: $\frac{dx}{dt} + y = \sin t + 1; \qquad \frac{dy}{dt} + x = \cos t$ (ii) Solve: $x^2 \frac{d^2y}{dx^2} + 7x \frac{dy}{dx} + 13y = \log x.$ (9+6)	3	3
19.	 (i) Find the differential equation of all planes which are at constant distance <i>k</i> from the origin. (ii) Solve ^{∂z}/_{∂x} = 6x + 3y, ^{∂z}/_{∂y} = 3x - 4y. (8 + 7) 	3	3
20.	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2 + xy + y^2.$	3	3

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
21.	(i) Show that the solution of the differential equation $\frac{d^2y}{dt^2} + 4y = A \sin pt$	4	4
	which is such that $y = 0$ and $\frac{dy}{dt} = 0$ when $t = 0$, is $y = A \frac{(\sin pt - \frac{1}{2}p \sin 2t)}{4 - p^2}$ if		
	$p \neq 2$. If $p = 2$, show that $y = \frac{A(\sin 2t - 2t \cos 2t)}{8}$.		
	(ii) Solve $(D-1)^2 y = x$. (9+6)		
22.	(i) By variation of parameters method, solve $(x-1)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + y =$	4	4
	$(x-1)^2$ given that x and e^x are the particular integrals of the equation		
	without the right hand member.		
	(ii) Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x.$ (8 + 7)		
23.	(i) Obtain the complete solution of $p + q = \sin x + \sin y$.	4	4
	(ii) Using Lagrange's Method, solve $(z - y)p + (x - z)q = (y - x)$.		
	(7 + 8)		

24.	(i) Solve $r - 4s + 4t = e^{2x+y}$.	4	4
	(ii) A 10-kg mass is attached to a spring having a spring constant of 140 N/m.		
	The mass is started in motion from the equilibrium position with an initial		
	velocity of 1 m/sec in the upward direction and with an applied external force		
	$F(t) = 5 \sin t$. Find the subsequent motion of the mass if the force due to air		
	resistance is $-90\dot{x} N$. (7 + 8)		

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
25.	Solve $(D^2 - 4D + 3)y = e^{-x} \sin x$.	5	5
26.	Solve: $(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 8y = 6x.$	5	5
27.	Form the partial differential equation by eliminating <i>f</i> from $z = xy + f(x^2 + y^2 + z^2).$	5	5
28.	Explain spring problem and hence obtain the motion of a vibrating spring.	5	5