STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2023–24 & thereafter)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE: MAJOR - COREPAPER: DIFFERENTIAL CALCULUSSUBJECT CODE: 23MT/MC/DC14TIME: 3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	State Leibnitz's theorem.	1	1
2.	Find y_2 if $y = x^2 \log x$.	1	1
3.	Define chord of curvature.	1	1
4.	Write the equation of the envelope of the family of straight lines.	1	1
5.	When is a function $f(x, y)$ said to have a maximum value at a point (a, b) of	1	1
	the domain of $f(x, y)$?		
6.	Write the property of spiral of Archimedes.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
7.	If $y = e^{ax}$ then $D^n(e^{ax})$ is	2	2
	(a) ae^{ax} (b) $a^n e^{ax}$ (c) $(ae^{ax})^n$ (d) $(ae^{ax})^{\frac{1}{n}}$		
8.	If $y = \tan^{-1} x$ then y_1 is	2	2
	(a) $\frac{1}{1+x^2}$ (b) $\frac{1}{1-x^2}$ (c) $\frac{1}{x^2-1}$ (d) $\frac{1}{\sqrt{1-x^2}}$		
9.	The radius of curvature for pedal equation $P = f(r)$ is	2	2
	(a) $\rho + r \frac{dr}{dP}$ (b) $\rho - r \frac{dr}{dP}$ (c) $\rho - r \frac{dP}{dr}$ (d) $\rho + r \frac{dP}{dr}$		
10.	The equation of the circle of curvature is	2	2
	(a) $(x - \overline{x})^2 + (y - \overline{y})^2 = \rho^2$ (b) $(x - \overline{x})^2 - (y - \overline{y})^2 = \rho^2$		
	(c) $(x + \overline{x})^2 + (y + \overline{y})^2 = \rho^2$ (d) $(x + \overline{x})^2 - (y + \overline{y})^2 = \rho^2$		
11.	The evolute of a curve is the envelope of its	2	2
	(a) tangent (b) straight line (c) normal (d) curve		
12.	The envelope of the paths of projectile in vacuum from the same point with the	2	2
	same velocity in the same vertical plane is a with the point of		
	projection as focus.		
	(a) ellipse (b) hyperbola (c) circle (d) parabola		

23MT/MC/DC14

12	/
. –	

13.	If a function $f(x, y)$ is a maximum or minimum	at $x = a$, $y = b$ and if the first	2	2
	partial derivatives $f_x(a, b)$ and $f_y(a, b)$ exist, then			
	(a) $f_x(a,b) = 0 \& f_y(a,b) \neq 0$ (b) $f_x(a,b) \neq 0$	$(a,b) \neq 0 \& f_y(a,b) \neq 0$		
	(c) $f_x(a,b) \neq 0 \& f_y(a,b) = 0$ (d) $f_x(a,b) = 0$	$f_{y}(a,b) = 0 \& f_{y}(a,b) = 0$		
14.	Suppose $u = f(x_1, x_2, \dots, x_n)$ is a function of <i>n</i>	variables which are connected	2	2
	by <i>m</i> equations $(m < n)$ then $n - m$ variables are			
	(a) independent (b) either in	ndependent or dependent		
	(c) dependent (d) neither	independent nor dependent		
15.	The evolute of the cardioid is		2	2
	(a) limacon (b) cardioid			
	(c) lemniscate (d) rose lem	nniscate		
16.	If the tangent at a double point P on a plane curve be real and distinct, the		2	2
	double point is called a			
	(a) node ((b) cusp		
	(c) isolated point	(d) double cusp		

Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
17.	(i) Determine y_n if $y = e^x sin^2 x$.	3	3
	(ii) If $y = \frac{x^2 + x - 1}{x^3 + x^2 - 6x}$, find y_n . (7 + 8)		
18.	(i) Find the radius of curvature of $y = xe^{-x}$ at its maximum point.	3	3
	(ii) Find the equation of the circle of curvature at the point (3, 1) on the curve		
	$y = x^2 - 6x + 10. (7+8)$		
19.	Find all the maxima and minima of the function	3	3
	$4x^2 - xy + 4y^2 + x^3y + xy^3 - 4.$		
20.	Classify double points on the curve and derive the conditions for the existence	3	3
	of double points on an algebraic curve.		

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
21.	If $y = \cos(m \sin^{-1} x)$, show that	4	4
	(i) $(1 - x^2)y_2 - xy_1 + m^2y = 0$		
	(ii) $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0.$		
	Also find the value of y_n when $x = 0$.		

22.	(i) Show that the chord of the curvature through the pole of the curve $r^m =$	4	4
	$a^m \cos m\theta$ is $\frac{2r}{m+1}$.		
	(ii) Find the centre of curvature of the curve $x = e^{-2t} \cos 2t$, $y = e^{-2t} \sin 2t$ at		
	$t = 0. \tag{7+8}$		
23.	(i) Show that the pedal equation of the envelope of the line $x \cos 2\alpha +$	4	4
	$y \sin 2\alpha = 2a \cos \alpha$, where α is the parameter is $p^2 = \frac{4}{3}(r^2 - a^2)$.		
	(ii) Find the envelopes of the family of straight lines $y = mx + \sqrt{a^2m^2 + b^2}$,		
	where m is the parameter. $(7 + 8)$		
24.	Find the maximum value of $x^2y^3z^4$ subject to the condition $x + y + z = 18$.	4	4

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
25.	If $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ verify that $\frac{d^2y}{dx^2} = \frac{1}{4a}sec^4\frac{\theta}{2}$.	5	5
26	Determine the evolute of the curve whose equation is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	5	5
27.	If the centre of a circle lies upon the parabola $y^2 = 4ax$ and the circle passes through the vertex of the parabola. Show that the envelope of the circle is $y^2(2a + x) + x^3 = 0$.	5	5
28.	Brief about the curve cycloid and mention its characteristic properties.	5	5

#