STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE MAJOR CORE

PAPER ALGEBRA & TRIGONOMETRY

PAPER
SUBJECT CODE : 23MT/MC/AT13

MAX. MARKS: 100 TIME 3 HOURS

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	Remove the fractional coefficients from the equation $x^{3} - \frac{1}{4}x^{2} + \frac{1}{3}x - 1 = 0.$	1	1
2.	Show that the coefficient of x^n in the infinite series	1	1
	$1 + \frac{b + ax}{1!} + \frac{(b + ax)^2}{2!} + \dots + \frac{(b + ax)^n}{n!} + \dots \text{ is } \frac{e^b a^n}{n!}.$		
3.	Find the eigen values of the following matrix $\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$.	1	1
4.	Give the expansion of $\tan \theta$ in series of ascending powers of θ .	1	1
5.	Prove that $\cosh^2 x + \sinh^2 x = \cosh 2x$.	1	1
6.	Express $\sinh^{-1} x$ in terms of logarithmic functions.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
7.	The equation whose roots are the roots of	2	2
	$x^5 + 6x^4 + 6x^3 - 7x^2 + 2x - 1 = 0$ with signs changed is		
	·		
	a) $x^5 - 6x^4 - 6x^3 - 7x^2 + 2x - 1 = 0$		
	b) $x^5 - 6x^4 + 6x^3 + 7x^2 + 2x + 1 = 0$		
	c) $x^5 - 6x^4 + 6x^3 - 7x^2 + 2x + 1 = 0$		
	d) $x^5 + 6x^4 - 6x^3 - 7x^2 + 2x - 1 = 0$		
8.	For a biquadratic equation whose roots are in arithmetic progression,	2	2
	the general roots can be assumed to be		
	a) $\alpha - 3k$, $\alpha - k$, $\alpha + k$, $\alpha + 3k$ b) $\alpha - 2k$, $\alpha - k$, $\alpha + k$, $\alpha + 2k$		
	c) $\alpha - 6k$, $\alpha - k$, $\alpha + k$, $\alpha + 6k$ d) $\alpha - 2k$, $\alpha - k$, $\alpha + k$, $\alpha + 3k$		

	1		
	$\frac{e-e^{-1}}{2} = \underline{\hspace{1cm}}.$	2	2
9.	a) $1 + \frac{1}{2!} + \frac{1}{4!} + \dots + \infty$		
	b) $\frac{1}{3!} + \frac{1}{5!} + \dots + \infty$		
	c) $1 + \frac{1}{3!} + \frac{1}{5!} + \dots + \infty$		
	J. 3.		
	d) $\frac{1}{2!} + \frac{1}{4!} + \dots + \infty$		
10.	$-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \infty = \underline{\hspace{1cm}}$	2	2
	a) $\log 2 + 1$		
	b) log 2		
	c) $\log 2 - 1$		
	d) 1 – log 2		
11.	The sum of the elements on the main diagonal of a matrix A is equal	2	2
	to the sum of its		
	a) eigenvectors b) invariants		
	c) eigenvalues d) elementary divisors		
12.	An application of Cayley Hamilton theorem is to find the	2	2
	of the matrix.		
	a) eigen vectors b) higher powers		
	c) eigen values d) determinant		
13.	The expansion of $sin^n\theta$ will be in terms of cosines of multiples of θ	2	2
	if <i>n</i> is an integer.		
	a) odd b) even		
	c) both odd and even d) none of the above		_
14.	$\tan n \theta$ is equivalent to	2	2
	a) $\frac{nC_1 \tan \theta - nC_3 \tan^3 \theta + nC_5 \tan^5 \theta}{1 - nC_2 \tan^2 \theta + nC_4 \tan^4 \theta}$		
	b) $nC_1 \tan \theta - nC_3 \tan^3 \theta + nC_5 \tan^5 \theta$		
	c) $1 - nC_2 \tan^2 \theta + nC_4 \tan^4 \theta$		
	d) $\frac{nC_1 \tan \theta + nC_3 \tan^3 \theta + nC_5 \tan^5 \theta}{1 + nC_2 \tan^2 \theta + nC_4 \tan^4 \theta}$		
	$1+nC_2 \tan^2 \theta + nC_4 \tan^4 \theta \dots$		

15.	$ \cosh 2x = \underline{\qquad} $	2	2
	a) $2cosh^2x - 1$ b) $1 + 2sinh^2x$		
	c) $\frac{1+tanh^2x}{1-tanh^2x}$ d) All of the above		
16.	If n is an integer, then $i^i = $	2	2
	a) $e^{(4n+1)\frac{\pi}{2}}$ b) $e^{(4n-1)\frac{\pi}{2}}$ c) $e^{(4n)\frac{\pi}{2}}$ d) $e^{-(4n+1)\frac{\pi}{2}}$		

Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
17.	 a) If one root of the equation x³ + ax + b = 0 is twice the difference of the other two, prove that one root is 13b/3a. b) Find the equation whose roots exceed by 2, the roots of the equation 4x⁴ + 32x³ + 83x² + 76x + 21 = 0. (7+8) 	3	3
18.	a) Sum the series: $\left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right)\frac{1}{9} + \left(\frac{1}{5} + \frac{1}{6}\right)\frac{1}{9^2} + \dots + \infty$. b) Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$. (7+8)	3	3
19.	Diagonalise the following matrix: $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.	3	3
20.	a) Express $\sin^7 \theta \cos^3 \theta$ as the sum of sines of multiples of θ . b) If $\cosh u = \sec \theta$ then show that $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$. (10+5)	3	3

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
21.	(a) Solve the equation	4	4
	$x^4 + 16x^3 + 83x^2 + 152x + 84 = 0$ by removing its second		
	term.		
	b) Show that the sum of the series		
	$\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+2^2}{4!} \dots + \infty = \frac{1}{2} (e-1)^2. $ (8+7)		
22.	a) If α, β, γ are the roots of the equation $x^3 + qx + r = 0$, find the	4	4
	value of $\frac{1}{\beta + \gamma} + \frac{1}{\gamma + \alpha} + \frac{1}{\alpha + \beta}$.		
	b) Find the eigen values and eigen vectors of the following matrix		
	$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}.$ (8+7)		

23.	a) Prove that the equation $\frac{ah}{\cos\theta} - \frac{bk}{\sin\theta} = a^2 - b^2$ has four roots and	4	4
	that the sum of the four values of θ which satisfy it is equal to an odd multiple of π radians.		
	b) If $A = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$, then compute A^n in terms of A . (8+7)		
24.	a) Determine a, b and c such that $\lim_{\theta \to 0} \frac{\theta(a + b\cos\theta) - c\sin\theta}{\theta^5} = 1$.	4	4
	b) Find the general value of $Log_{(-3)}^{\square}(-2)$. (9+6)		

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
25.	If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$ form	5	5
	the equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$.		
26.	Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$ and hence determine its inverse.	5	5
27.	a) Find $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n!}$. b) If $\frac{\tan \theta}{\theta} = \frac{2524}{2523}$, show that the value of θ is approximately 1°58′.	5	5
28.	a) Express $\cosh^7 \theta$ in terms of hyperbolic cosines of multiples of θ . b) If $\lambda^2 - 5\lambda - 2 = 0$ is the characteristic equation of the matrix $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$, then find A^4 . (5+5)	5	5

