STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 86 (For candidates admitted from the academic year 2023 – 2024)

B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS THIRD SEMESTER COURSE **ALLIED CORE** : **MATHEMATICAL STATISTICS-1** : SUBJECT CODE 23MT/AC/ST35 •

	•	25111/10/0155	
TIME	:	3 HOURS	MAX. MARKS: 100

PAPER

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	Define marginal probability distribution for a discrete random	1	1
	variable.		
2.	If X and Y are independent random variables then show that	1	1
	$\varphi_{X+Y}(\omega) = \varphi_X(\omega). \varphi_Y(\omega).$		
3.	Derive the mean of Binomial distribution	1	1
4.	Define standard normal distribution	1	1
5.	Using the property of quadratic expression, prove that	1	1
	$ Cov(X,Y) \le \sigma_X \cdot \sigma_Y$ and hence $ r_{XY} \le 1$		
6.	State any two properties of regression coefficients	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL				
	Answer ALL questions						
7.	The cumulative distribution function of a random variable is	2	2				
	a) $F(x) = P(X \le x)$						
	b) $F(x) = P(X < x)$						
	c) $F(x) = P(X = x)$						
	d) $F(x) = P(X > x)$						
8.	A continuous random variable X has probability density function	2	2				
	$f(x) = e^{-x}, 0 < x < \infty$, then $P(X > 1)$ is						
	a) e						
	b) e^{-1}						
	c) 1						
	d) ∞						
9.	Mean of a constant 'a' is	2	2				
	a) 0						
	b) a						
	$\begin{array}{c} c \\ \end{array} 1 \\ \end{array}$						
	d) a^2						
10.	A random variable X with probability density function $f(x) = \frac{1}{4}$,	2	2				
	-2 < x < 2, the moment generating function of X is given by						
	·						
	a) $\frac{e^{2t}+e^{-2t}}{2t}$						
	$\frac{4t}{e^{2t}-e^{-2t}}$						
	0) 4t						
	c) $\frac{e^{2t}+e^{-2t}}{2t}$						
	2t						
	d) $\frac{c}{2t}$						

value 3, then P(X \ge 1) is a) 1 - e ² b) 1 - e ⁻² c) 1 + e ² d) 1 + e ⁻² 12. In an experiment, positive and negative values are equally likely to occur. The probability of obtaining at most one negative value in 5 trials is a) 1/ ₃₂ b) 5/ ₃₂	2 2
a) $1 - e^2$ b) $1 - e^{-2}$ c) $1 + e^2$ d) $1 + e^{-2}$ 12. In an experiment, positive and negative values are equally likely to 2 2 occur. The probability of obtaining at most one negative value in 5 trials is a) $\frac{1}{_{32}}$ b) $\frac{5}{_{32}}$	2
b) $1 - e^{-2}$ c) $1 + e^{2}$ d) $1 + e^{-2}$ 12. In an experiment, positive and negative values are equally likely to occur. The probability of obtaining at most one negative value in 5 trials is a) $\frac{1}{_{32}}$ b) $\frac{5}{_{32}}$	2
c) $1 + e^2$ d) $1 + e^{-2}$ 12. In an experiment, positive and negative values are equally likely to 2 2 occur. The probability of obtaining at most one negative value in 5 trials is a) $\frac{1}{_{32}}$ b) $\frac{5}{_{32}}$	2
d) $1 + e^{-2}$ 12. In an experiment, positive and negative values are equally likely to occur. The probability of obtaining at most one negative value in 5 trials is a) $\frac{1}{_{32}}$ b) $\frac{5}{_{32}}$	2
12. In an experiment, positive and negative values are equally likely to 2 2 2 occur. The probability of obtaining at most one negative value in 5 trials is a) $\frac{1}{_{32}}$	2
occur. The probability of obtaining at most one negative value in 5 trials is a) $\frac{1}{32}$ b) $\frac{5}{32}$	2
trials is a) $\frac{1}{_{32}}$ b) $\frac{5}{_{32}}$	
a) $\frac{1}{32}$ b) $\frac{5}{32}$	
b) $\frac{5}{32}$	
b) $\frac{5}{32}$	
$0) \frac{3}{32}$	
c) $\frac{6}{32}$	
d) $\frac{2}{32}$	
	2
a) ∞	-
b) 1	
$\begin{pmatrix} c \\ c \end{pmatrix} = 0$	
d) not defined	
	2
a) Standard deviation	
b) Mean	
c) Variance	
d) Covariance	
	2
coefficient?	
a) -0.34	
b) -1	
c) 1.08	
d) 1	
16. Which of the following techniques is used to predict the value of 2	2
one variable on the basis of other variables?	
a) Correlation analysis	
b) Correlation Corefficient	
c) Regression Analysis	
d) Spearman's rank Correlation	

Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
17.	If the joint probability density function is given by	3	3
	$f(x,y) = 24y(1-x)$ in $0 \le y \le x \le 1$, find $Var(X), Var(Y)$ and		
	Cov(X, Y) by applying the appropriate formulas.		
18.	a) Out of 800 families with 4 children each, assuming equal	3	3
	probabilities for boys and girls, find how many families would		
	be expected to have		
	(i) 2 boys and 2 girls		
	(ii) Atmost 2 girls		
	(iii) Atleast 1 boy		
	b) If X and Y are independent Poisson random variables, show that		
	the conditional distribution of X, given the value of $(X + Y)$ is a		
	binomial distribution. (7+8)		

19.	Eit a normal d	atribution	to the fe	llouina	fracu	onou	listriky	tion by	3	3
19.	Fit a normal distribution to the following frequency distribution by the method of areas and hence find the theoretical frequencies							•	3	3
	the method of	areas and	hence fin	d the th	eoreti	cal free	quenci	es		
	x 125 135	145 1	155 165	175	185	195	205	Total		
	f 1 1	14 2	22 25	19	13	3	2	100		
20.	a) Calculate th	e correlati	ion coeffic	cient be	tween	X and	Y usir	ng	3	3
	standard dev	viations fo	or the follo	owing d	ata:					
	X 29 30	28 31	1 28 3	33 27	7 3:	5 23	36			
	Y 21 29	27 27	7 22 2	29 20) 2	8 18	29			
	b) Ten students got the following percentage of marks in Maths and									
	Physics									
	Students	1 2	3 4	5	6	7	8 9	10		
	Marks in	78 36	98 2	5 75	82	90	62 65	5 39		
	Maths									
	Marks in	84 51	91 60	0 68	62	86	58 63	3 47		
	Physics									
	Calculate the rank correlation coefficient $(8+7)$									

/3/

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL			
	Answer ANY TWO questions					
21.	A continuous random variable X has the p.d.f, $f(x) = kx^2$,					
	$0 \le x \le 1$. Find					
	(i) the value of k					
	(ii) $P\left(\frac{1}{4} < X < \frac{1}{2}\right)$					
	(iii) $P\left(X > \frac{3}{4}/X > \frac{1}{2}\right)$					
	(iv) The value of a such that $P(X \le a) = P(X > a)$					
	(v) The value of b such that $P(X > b) = 0.05$					
22.	 a) If the probability density function of a continuous random variable X is given by f(x) = k(1 + x)e^{-2x}, in -1 ≤ x ≤ ∞. Analyze the procedure to find the value of k, mean and variance of X by finding the moment generating function of X. b) Analyze the relationships between the first four cumulants and their corresponding central moments. (9 + 6) 	4	4			
23.	 a) If X is a discrete random variable following a Poisson distribution with parameter λ, show that P(X = even) = e^{-λ}coshλ and P(X = odd) = e^{-λ}sinhλ b) Find the probability that at most 5 defective fuses will be found in a box of 200 fuses, if experiences shows that 2% of such fuses are defective. (8+7) 	4	4			
24.	A number X is chosen randomly from the integers $1,2,3,4$ and a number Y is chosen from among those at least as large as X. Find the equations of the regression line of Y on X and that of X on Y.	4	4			

Q. No.	SECTION E $(2 \times 10 = 20)$						CO	KL
	Answer ANY TWO questions							
25.	Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of black balls drawn, find the joint probability distribution of (X, Y).						5	5
26.	State and prove Tchebycheff's Inequality.							5
27.	The marks obtained by a number of students in a certain subject are approximately normally distributed with mean 65 and standard deviation 5. If 3 students are selected at random from this group, what is the probability that at least one of them would have scored above 75?						5	5
28.	Find the standard errors of estimate of Y on X and X on Y fromthe following data:X12345						5	5
	Y	14						

##