STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

B.Com.(A&F) DEGREE EXAMINATION, NOVEMBER 2024 THIRD SEMESTER

COURSE	:	ALLIED CORE	
PAPER	:	MATHEMATICS FOR	COMMERCE
SUBJECT CODE	:	23MT/AC/MT35	
TIME	:	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	Show that 0 is a characteristic root of a matrix if and only if the matrix is	1	1
	singular.		
2.	Solve $x^3 - 3x^2 - 4x + 12 = 0$ given that sum of two roots is zero.	1	1
3.	State Newton-Raphson's formula for solving $f(x) = 0$.	1	1
4.	Write the Newton's backward difference formula to compute the derivative	1	1
	of $y = f(x)$ at $x = x_0$.		
5.	State Simpson's three eighth rule.	1	1
6.	Define feasible solution of a linear programming problem.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
7.	Which of the following is not a type of matrix?	2	2
	a) Identity Matrix		
	b) Scalar Matrix		
	c) Hermitian Matrix		
	d) Logarithmic Matrix		
8.	A matrix is diagonalizable if:	2	2
	a) It has distinct eigenvalues		
	b) It is symmetric		
	c) It is skew-symmetric		
	d) It has a determinant of zero		
9.	If the sum of the roots of a quadratic equation is 5 and the product is 6, then	2	2
	the equation is:		
	a) $x^2 - 5x + 6 = 0$		
	b) $x^2 + 5x + 6 = 0$		
	c) $x^2 - 6x + 5 = 0$		
	d) $x^2 + 6x + 5 = 0$		
10.	The equation whose roots are reciprocals of the roots of $ax^2 + bx + c = 0$	2	2
	is:		
	a) $ax^2 + cx + b = 0$		
	b) $ax^2 + bx + 1 = 0$		
	c) $bx^2 + cx + a = 0$		
	d) $cx^2 + bx + a = 0$		
11.	Gauss-Seidel iteration method is preferred over Gauss-Jacobi method	2	2
	because:		
	a) It is easier to implement		
	b) It converges faster		
	c) It does not require matrix inversion		
	d) It is used for symmetric matrices only		

	-		
12.	Simpson's $\frac{1}{3}$ rule is applicable for:	2	2
	a) Discontinuous functions		
	b) Evenly spaced data points		
	c) Unevenly spaced data points		
	d) Integrals of complex functions		
13.	Newton's forward difference formula is used to approximate:	2	2
	a) Derivatives		
	b) Integrals		
	c) Zeros of a function		
	d) Solutions of differential equations		
14.	A linear programming problem involves:	2	2
	a) Linear objective function and linear constraints		
	b) Nonlinear objective function and linear constraints		
	c) Linear objective function and nonlinear constraints		
	d) Nonlinear objective function and nonlinear constraints		
15.	The feasible region in a linear programming problem is:	2	2
	a) Convex		
	b) Concave		
	c) Linear		
	d) Bounded		
16.	Canonical form of an L.P.P. refers to:	2	2
	a) A specific solution technique		
	b) The maximization problem		
	c) Standard representation of constraints		
	d) None of the above		
			1

Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
17.	If A is a square matrix of order n, then prove that $A + A^T$ is symmetric and	3	3
	$A - A^T$ is skew symmetric. Hence express the matrix $\begin{bmatrix} 0 & 5 & -3 \\ 1 & 1 & 1 \\ 4 & 5 & 9 \end{bmatrix}$ as a sum		
	of symmetric and skew symmetric matrices.		
18.	Solve the following system of equations using Gaussian elimination and	3	3
	Gauss Jordan methods:		
	5x - 2y + 3z = 18		
	x + 7y - 3z = -22		
	2x - y + 6z = 22		
19.	Find $y'(0)$ and $y''(0)$ from the following table:	3	3
	x 0 1 2 3 4 5		
	y 4 8 15 7 6 2		

20.	Use Big – M method to solve	3	3
	Minimize $Z = 4x_1 + 3x_2$		
	subject to		
	$2x_1 + x_2 \ge 10$		
	$-3x_1 + 2x_2 \le 6$		
	$x_1 + x_2 \ge 6$		
	$x_1, x_2 \ge 0$		

Q. No.	SECTION D $(2 \times 15 = 30)$ Answer ANY TWO questions	CO	KL
21.	State and verify Cayley-Hamilton theorem for	4	4
	$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and hence find its inverse.		
22.	If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find	4	4
	(i) $\sum \alpha^2$ (ii) $\sum \alpha^2 \beta$ (iii) $\sum \alpha^2 \beta^2$ (iv) $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$		
23.	Is the following system of equations diagonally dominant? If not, make it	4	4
	diagonally dominant and solve using Gauss Seidal iteration method.		
	6x + 15y + 2z = 72; x + y + 54z = 110; 27x + 6y - z = 85		
24.	Compare the value of $\int_0^{10} \frac{dx}{1+x^2}$ obtained using Trapezoidal rule and	4	4
	Simpson's one third rule.		

Q. No.	SECTION E $(2 \times 10 = 20)$ Answer ANY TWO questions	СО	KL
25.	Determine the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.	5	5
26.	Form the equation with rational coefficients whose roots are $1 + i$ and $-2 + \sqrt{3}$.	5	5
27.	Find the root of $x^3 - 9x + 1 = 0$ using bisection method.	5	5
28.	Solve the following linear programming problem: Maximize $Z = 3x_1 + 2x_2 + 5x_3$	5	5
	subject to		
	$x_1 + 4x_2 \le 420$		
	$3x_1 + 2x_3 \le 460$		
	$x_1 + 2x_2 + x_3 \le 430$		
	$x_1, x_2, x_3 \ge 0$		