STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024 and thereafter)

B.C.A. DEGREE EXAMINATION, NOVEMBER 2024 THIRD SEMESTER

COURSE	:	ALLIED CORE	
PAPER	:	MATHEMATICS FOR	COMPUTER SCIENCE-1
SUBJECT CODE	:	23MT/AC/MS35	
TIME	:	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	Find the eigen values of the matrix $\begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$.	1	1
2.	Find the unit vector normal to $\phi = x^2 - y^2 + z$ at $(1, -1, 2)$.	1	1
3.	Define solenoidal vector.	1	1
4.	Write Newton-Raphson formula to obtain the cube root of N.	1	1
5.	Define numerical differentiation and numerical integration	1	1
6.	Define slack and surplus variables in LPP	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
7.	Cayley-Hamilton theorem can be verified for which type of	2	2
	matrix?		
	a) column matrix		
	b) row matrix		
	c) square matrix		
	d) zero matrix		
8.	Given a matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, which of the following is the	2	2
	characteristic equation of A?		
	a) $\lambda^2 + 2\lambda + 1 = 0$		
	b) $\lambda^2 + 2\lambda - 1 = 0$		
	c) $(\lambda - 1)^2 = 0$		
	d) $\lambda^2 - 2\lambda = 0$		
9.	For a vector field \vec{f} , if $\nabla \cdot \vec{f} = 0$, then the vector field is	2	2
	a) rotational		
	b) solenoidal		
	c) irrotational		
	d) Scalar potential		
10.	If $\phi(x, y, z) = x^2 + y^2 + z^2$ is a scalar function, what is	2	2
	grad φ?		
	a) (2x, 2y, 2z)		
	b) (x, y, z)		
	c) (2, 2, 2)		
	d) (0, 0, 0)		
11.	How does the bisection method determine the next interval?	2	2
	a) By taking the derivative of the function.		
	b) By evaluating the function at multiple points.		
	c) By finding the midpoint of the current interval.		
	d) By randomly selecting points in the interval.		

	/2/ 23МЛ	[/AC/M	S35
12.	 What does the Gauss elimination process convert a system into? a) A triangular matrix. b) A diagonal matrix. c) A row-reduced matrix. d) A symmetric matrix. 	2	2
13.	For Newton's forward interpolation, which term is used to represent the first difference? a) Δy_0 b) y_0 c) $\Delta^2 y_0$ d) $\Delta^3 y_0$	2	2
14.	To estimate a value using Newton's backward interpolation what is the formula for the first backward difference ∇y_n ? a) $\nabla y_n = y_n - y_{n+1}$ b) $\nabla y_n = y_{n+1} - y_n$ c) $\nabla y_n = y_n - y_{n-1}$ d) $\nabla y_n = y_n + y_{n-1}$	n, 2	2
15.	 Which of the following is NOT a requirement for a linear programming problem? a) The objective function must be linear b) All variables must be non-negative c) Constraints can be non-linear d) All constraints must be expressed as linear inequalities or equations 	2	2
16.	 What is the feasible solution in linear programming? a) A solution that maximizes the objective function b) A solution that satisfies all constraints c) A solution that minimizes the objective function d) A solution that includes all possible variable values 	2	2

Q. No.	SECTION Answer Al	•						СО	KL
17.	Verify Cayley Hamilton theorem for $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and find its inverse.							3	3
18.	-	Using bisection method, find a real root of the equation $x^3 - x - 11 = 0$.							3
19.	$x = 11 - 0.$ Obtain the first and second derivatives of $y = log_e x$ from the following data $x = 500$ 510 520 530 540 550 $y = log_e^x$ 6.214 6.234 6.253 6.272 6.291 6.309 $= log_e^x$ 6 4 8 9 6 9 (i) at $x = 500$ by Newton's forward difference formula and (ii) at $x = 550$ by Newton's backward difference formula.							3	3
20.	and z which Maximize Subject to	(ii) at $x = 550$ by Newton's backward difference formula. Apply Simplex method to find the non negative values of x, y and z which Maximize $Z = 3x + 2y + 5z$ Subject to $x + 4y \le 420$ $3x + 2z \le 460$ $x + 2y + z \le 430, x, y, z \ge 0$							3

Q. No.	SECTION D (2				CO	KL	
	Answer ANY T	WO question	1S				
21.	Diagonalize the	4	4				
22.	If $\phi = \frac{x}{r^3}$, $\vec{r} = x$	$x\hat{\imath} + y\hat{\jmath} + z\hat{k}$	and $r = \vec{r} $, the	nen prove that	4	4	
	(i) $div \vec{r} = 3$.						
	(ii) <i>curl</i> $\vec{r} = 0$.						
	(ii) $\nabla^2 \phi = 0$.						
23.	Solve the follow method	ing system of	linear equation	ns by Gauss Jordan	u 4	4	
		x + y	+ z = 9				
			+4z = 13				
		3x + 4y	+5z = 40				
24.	requirements of	transistors, r	resistors and c	nted circuits. The apacitors for each are given below Stock		4	
		Α	В	available			
	Transistor	15	10	180			
	Resistor	10	20	200			
	Capacitor 15 20 210						
	Profit	Rs.5	Rs.8				
		-		hould the company profit by graphical			

Q. No.	SECTION E $(2 \times 10 = 20)$ Answer ANY TWO questions	СО	KL
25.	If $\phi = x^3 + y^3 + z^3 - 3xyz$, find <i>div grad</i> ϕ , <i>curl grad</i> ϕ .	5	5
26	Evaluate $\int_0^5 \frac{dx}{4x+5}$ by Trapezoidal rule using 11 coordinates.	5	5
27.	Evaluate $\sqrt{12}$ to four decimal places by Newton-Raphson method.	5	5

28.	a) Express t	the following	g LPP in stan	dard matrix t	form	5	5
	Maximiz						
	Subject	to $2x_1 + 3x_2$	$+2x_3 \ge 6$				
		$3x_1 + 4x_2 =$	8				
	6	$5x_1 - 4x_2 + 3x_1 - 4x_2 + 3x_2 + 3x_1 - 4x_2 + 3x_2 + 3x_2 + 3x_1 - 4x_2 + 3x_2 + $	$x_3 \leq 10$ and	$x_1, x_2, x_3 \ge$	0		
	b) A firm pr		•				
	on three d	lifferent mac	hines. The ti	me required	to		
	manufact	ure one unit	of each of the	e three produ	cts and the		
	daily capa	acity of the th	hree machine	s are given i	n the table		
	below:	•		C			
	Machine	Time per u	nit (minutes	5)	Machine		
			Product 2		capacity		
					(Minutes/		
					day)		
	M_1	2	3	2	440		
	M_2	4	-	3	470		
	M_3	430					
	It is required	ufactured for					
	each product	,2, 3 is Rs.4,					
	Rs.3, Rs. 6	respectively	. It is assum	ned that all	the amounts		
	produced a						
	mathematica	l model for t	he problem.		(5+5)		