STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2023-24 & thereafter)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV - CHEMISTRY FIRST SEMESTER

COURSE: ALLIED - COREPAPER: MATHEMATICS FOR CHEMISTRY - ISUBJECT CODE: 23MT/AC/MC15TIME: 3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	Find the eigen values of $\begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$.	1	1
2.	Find the n^{th} differential coefficient of $\sin 3x$.	1	1
3.	Find a partial differential equation by eliminating the arbitrary function	1	1
	from $z = f(x^2 + y^2)$.		
4.	Recall Cayley Hamilton theorem.	1	1
5.	Show $E = 1 + \Delta$.	1	1
6.	Find the value of $\sum \alpha^2 \beta$ if α, β, γ are the roots of $x^3 - 6x^2 + 11x - 21 = 0$.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
7.	Two matrices A and B are said to be similar if there exists a non-singular matrix P such that	2	2
	(a) $P^{-1}BP = B$ (b) $P^{-1}AP = A$ (c) $P^{-1}AP = B$		
8.	If λ is the characteristic root corresponding to X, the characteristic vector	2	2
	of <i>A</i> , then		
	(a) $AX = \lambda X$ (b) $AX = \lambda$ (c) $X = \lambda A$		
9.	The value of $\sum \alpha \beta \gamma$ of $x^4 - 8x^3 + 14x^2 - 8x - 15 = 0$ is	2	2
	(a) 8 (b) 14 (c) -8		
10.	If $y = sinhx$ then $\frac{dy}{dx} =$	2	2
	(a) sinhx (b) coshx (c) tanhx		
11.	n^{th} derivative of sin $(ax + b)$ is	2	2
	(a) $a^n \sin(\frac{n\pi}{2} + ax + b)$		
	(b) $b^n \sin(\frac{n\pi}{2} + ax + b)$		
	(c) $a^n \cos\left(\frac{n\pi}{2} + ax + b\right)$		
12.	$\int \frac{dx}{\sqrt{x} + \sqrt{1 + x}} =$	2	2
	(a) $(1+x)^{3/2} - x^{3/2}$		
	(b) $\frac{3}{2}(1+x)^{3/2} - \frac{3}{2}x^{3/2}$		
	(c) $\frac{2}{3}(1+x)^{3/2} - \frac{2}{3}x^{3/2}$		

13.	Eliminating <i>a</i> and <i>b</i> from $z = (x + a)(y + b)$ the partial differential	2	2
	equation is		
	(a) $z = pq$ (b) $z = (p+1)q$ (c) $z = p(q+1)$		
14.	Clairaut's form is:	2	2
	(a) $z = pq + f(p,q)$		
	(b) $z = px + qy + f(p,q)$		
	(c) $z = px + qy + c$		
15.	For an unequal interval of <i>x</i> we use	2	2
	(a) Binomial method		
	(b) Lagrange's interpolation formula		
	(c) none of these		
16.	The first differences of y_n for $y = f(x)$ in forward differences is given as	2	2
	(a) $\Delta y_n = y_{n+1} - y_n$		
	(b) $\Delta y_n = y_n - y_{n+1}$		
	(c) $\Delta y_n = y_{n+1} + y_n$		

Q. No.	SECTION C $(2 \times 15 = 30)$ Answer ANY TWO questions				CO	KL
17.	Find the characteristic equation of the matrix A =	1	$\begin{bmatrix} 0\\1\\-3 \end{bmatrix}$	and	3	3
	determine its inverse.					

18.	 (a) Diminish the roots of the following equation by 1 and solve x⁴ - 4x³ - 7x² + 22x + 24 = 0. (b) Solve the equation: 6x⁵ + 11x⁴ - 33x³ - 33x² + 11x + 6 = 0. 							3
						(8+7)		
19.	Find the n^{th} differential coefficient of $\cos^5 \theta \sin^7 \theta$.							3
20.	From the following table, find the value of $e^{1.17}$ using Newton's forward formula.							
	x: 1.00 1.05 1.10 1.15 1.20 1.25 1.30							
	<i>e^x</i> 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693							
	<u> </u>	•	•			·		

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
21.	Diagonalise the matrix $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{pmatrix}$.	4	4
22.	(a) Determine the roots of the equation: $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0.$ (b) Integrate the function: $\sqrt{(x-3)(7-x)}$ with respect to x (8+7)	4	4
			3

23MT/AC/MC15

23.	(a) Solve: $p^2 + x$					4	4
	(b) Solve: $(y^2 + z^2)p - xyq = -xz.$ (9+6)						
24.	(a) Use Lagrange's interpolation formula to find the value of <i>y</i> when						4
	x = 10 if the values of x and y are given below						
	x 5	6	9	11			
	y 12	2 13	14	16			
	(b) Estimate the	missing ter	m from th	ne followin	g table.		
	x	x 1 2	3 4	5			
	f	f(x) 7 ?	13 21	37			
					(8+7)		

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
25.	Eliminate the arbitrary function from $\varphi(x^2 + y^2 + z^2, x + y + z) = 0$.	5	5
26	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 3 & 2 \\ 6 & 5 & -1 \end{bmatrix}$	5	5
27.	Find y_n of (a) $y = \frac{3}{(x+1)(2x-1)}$ (b) $e^x sinx$ (5+5)	5	5
28.	Solve the equation $x^3 - 12x^2 + 39x - 28 = 0$ given that the roots are in arithmetic progression.	5	5