STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2019–20 & thereafter)

B. Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: ALGEBRAIC STRUCTURES	
SUBJECT CODE	: 19MT/MC/AS55	
TIME	: 3 HOURS	MAX. MARKS: 100
	SECTION – A	

Answer any ten questions:

 $(10 \times 2 = 20)$

- 1. Show that for each element a in a group G, there is a unique element b in G such that ab = ba = e.
- 2. List the subgroups of \mathbb{Z}_{30} .
- 3. Express the permutation (153)(246)(352) as a product of disjoint cycles form and hence rewrite it as a product of 2-cycles.
- 4. Define inner automorphism induced by an element a in group G.
- 5. Find all the distinct left cosets of (3Z, +) which is subgroup of the group (Z, +).
- 6. Find the characteristic of ring of integers and \mathbb{Z}_n .
- 7. Show that a group G having a unique subgroup H of finite order is normal in H.
- 8. Define group homomorphism and give an example.
- 9. Show that the ideal $\langle x^2 + 1 \rangle$ is maximal in R[x].
- 10. Is Z_m a homomorphic image of Z? Justify.
- 11. Define isometry in \mathbb{R}^n .
- 12. State any two consequences of Lagrange's theorem.

SECTION - B

Answer any five questions:

 $(5 \times 8 = 40)$

- 13. State and prove one-step subgroup test.
- 14. (a) Determine whether the given permutation (12)(134)(152) is odd or even. (b) Express the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{pmatrix}$ as product of 2cvcles. (3+5)
- 15. State and prove Cayley's theorem.
- 16. (a) Define orbit and stabilizer of a point for a group of permutations. (b) Determine the orbit and stabilizer of a point for the group $G = \{(1), (132)(465)(78), (132)(465), (123)(456), (123)(456)(78), (78)\}.$ (4+4)
- 17. (a) Give an example of a subset of a ring that is a subgroup under addition but not a subring.
 - (b) State and prove subring test. (2+6)
- 18. (a) Illustrate with an example the factor group concept for $G = Z_{18}$ and $H = \langle 6 \rangle$. (b) State and prove the normal subgroup test. (3+5)
- 19. State and prove the theorem on existence of factor rings.

 $(2 \times 20 = 40)$

SECTION – C

Answer any two questions:

20. (a) Prove that every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

- (b) State and prove fundamental theorem of cyclic groups. (8 + 12)
- 21. (a) If *G* is a group and *H* is a normal subgroup of *G* then prove that the set $G/H = \{aH: a \in G\}$ is a group under the operation (aH)(bH) = abH.
 - (b) Prove that kernel of a homomorphism is a normal subgroup of the group.
 - (c) State and prove first Isomorphism theorem for groups and explain with an example on wrapping function.(6+ 4+10)
- 22. (a) Prove that R/A is a field if and only if A is maximal where R is a commutative ring with unity and A is an ideal of R.
 - (b) Show that there exists a field *F* (called the field of quotients of *D*) that contains a subring isomorphic to *D*. (8+12)