STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86

(For candidates admitted during the academic year 2023-24 & thereafter)

B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV- CHEMISTRY FIRST SEMESTER

COURSE : MAJOR CORE

: GENERAL CHEMISTRY **PAPER**

SUBJECT CODE : 23CH/MC/GC14

TIME : 3 HOURS **MAX.MARKS**:100

Q.No.	SECTION-A		
	MULTIPLE CHOICE QUESTIONS: (15 x 1 = 15 Marks)	СО	KL
1.	The maximum number of electrons that can be accommodated in the third shell (M-shell) is	CO1	K1
2.	The de Broglie wavelength is associated with a) only particles with charge b) all moving particles c) only light waves d) only massive particles	CO1	K1
3.	The mathematical expression for Heisenberg's uncertainty principle is a) Δx . $\Delta p \geq \frac{\hbar}{2}$ b) ΔE . $\Delta t \geq \frac{h}{2}$ c) Δp . $\Delta t \geq \frac{h}{2}$ d) Δx . $\Delta p \geq \frac{h}{2\pi}$	CO1	K1
4.	A normalized wave function satisfies the condition a) The integral of the square of the wave function over all space is zero b) The integral of the square of the wave function over all space is one c) The wave function is always positive d) The wave function is orthogonal to other wave functions	CO1	K1
5.	Which of the following pairs exhibit diagonal relationship in the periodic table? a) Na and Mg b) Li and Mg c) Be and Si d) B and Al	CO1	K1
6.	Ionization energy generally increases across a period because: a) Atomic size increases. b) Nuclear charge decreases. c) Atomic size decreases and nuclear charge increases. d) Screening effect decreases.	CO1	K1
7.	A metal ion with low polarizability and high charge density is classified as a) A hard acid b) A soft acid c) A hard base d) A soft base	CO1	K1
8.	is an example of Lux Flood acid. a) Al ₂ O ₃ b) SO ₃ c) SiO ₂ d) MgO	CO1	K1
9.	Which of the following is an electrophile? a) CN ⁻ b) Cl ⁻ c) NO ₂ ⁺ d) NH ₃	CO1	K1

10.	is an electrophilic substitution reaction			
	a) Addition of HBr to propene b) Bromination of benzene	CO1	K1	
	c) Reaction of NH ₃ with ethyl chloride d) Hydrolysis of ethyl acetate			
11.	The cyclopropenyl cation is considered aromatic because it has			
	a) 4π electrons. b) 6π electrons.	CO1	K1	
	c) 2π electrons. d) no π electrons.			
12.	Which of the following is NOT true about the screening effect?			
	a) It reduces the attractive force between the nucleus and outer electrons			
	b) It is more significant for s-orbital electrons than d-orbital electrons	CO1	K1	
	c) It increases as we move down a group in the periodic table			
	d) It remains constant as the atomic number increases in a period			
13.	For a given principal quantum number $n = 3$, what are the possible values			
	of the azimuthal quantum number (1)?	CO1	K1	
	a) 0, 1, 2, 3 b) 0, 1 c) 0, 1, 2 d) 0			
14.	The prefix name of -CONH ₂ is			
	a) oxo b) formyl c) carbamoyal d) mercapto			
15.	Identify the order of stability of the given intermediates.			
	(i) H_3C C C C C C C C C C			
	a) (ii) > (iii) > (i) b) (iii) > (i) > (ii)			
	c) (iii) > (i) > (ii) d) (ii) > (ii) > (iii)			
	SECTION- B	CO	171	
	FILL IN THE BLANKS: (5 x 1 = 5 Marks)	CO	KL	
16.	The energy required to remove an electron from an atom in its gaseous	G0.4		
10.	state is called	CO2	K2	
17.	An atom with atomic number 17 and mass number 35 will have neutrons.	CO2	K2	
18.	The time-independent Schrödinger equation is	CO2	K2	
19.	The Compton shift depends on	CO2	K2	
20.	The effect involves the permanent shift of electron density through sigma bonds caused by differences in electronegativity.	CO2	K2	

	MATCH THE FOLLOW	VING:	$(5 \times 1 = 5 \text{ Marks})$	СО	KL
21.	Ernest Rutherford	A. Artificial radioactiv	ity	CO2	K2
22.	Thomson	B. eigen values real		CO2	K2
23.	Hermitian operator	C. screening effect		CO2	K2
24.	Slater rule	D. plum pudding mode	el	CO2	K2
25.	Irène Joliot-Curie	E. Nuclear Model		CO2	K2
	ANSWER IN ONE OR	TWO LINES:	$(5 \times 1 = 5 \text{ Marks})$	СО	KL
26.	What is hyperconjugation	?		CO2	K2
27.	What are isobars?			CO2	K2
28.	What is photo electric effe	ect?		CO2	K2
29.	What is tautomerism?			CO2	K2
30.	What is levelling effect?			CO2	K2
		SECTION-C		GO.	T Z T
	Answer any SIX of the fo	ollowing:	$(6 \times 5 = 30 \text{ Marks})$	СО	KL
31.	electrons?	Germer experiment confirm ermine whether $oldsymbol{e}^{kx}$ is an e	(3 Marks)	CO3	K3
32.	Discuss with an example the general trends that are observed for atomic radii and ionization energy as you move down a group in the periodic table.		CO3	К3	
33.	a) Determine whether the neutron-to-proton (n/p)	isotope ${}^{56}_{26}Fe$ (iron-56) is ratio.	s stable based on its (3 Marks)	CO3	К3
	b) Give any two application	ons of HSAB.	(2 Marks)		

34.	Apply Huckels rule and find out whether the given compounds are		
	Aromatic/ Anti aromatic / Non-aromatic:		
	.CH ⁺	CO3	K3
	+		
35.	a) Draw the curved arrow notation for the following reactions:		
	$(3 \times 1 = 3 \text{ marks})$		
	(i) H—Ö + H—Ö: ——►		
	Н		
	:0:		
	L CN		
	(ii) T CIV		
	H ₃ C CH ₃		
		CO3	K3
	(iii) $Br^+ + H_2C \longrightarrow CH_2 \longrightarrow$		
	h) A male largest over male and give the HTDAC name for the given		
	b) Apply lowest sum rule and give the IUPAC name for the given		
	compound: (2 marks)		
	CH ₃ H ₃ C		
	H ₃ C CH ₃		
	CH ₃		
	CH ₃		
36.	Discuss the postulates of quantum mechanics.	CO3	K3
50.	Discuss the postulates of quantum mechanics.		KS
37.	Discuss the stability of carbocations. What factors influence their		
	stability? Provide examples of primary, secondary, and tertiary	CO3	K3
	carbocations.		
			5

..5

	SECTION-D Answer any FOUR of the following: $(4 \times 5 = 20 \text{ Marks})$	со	KL
38.	a) Calculate the mass defect and binding energy for U-235. One U-235 atom has a mass of 235.043924 amu. (3 Marks)b) What is Compton effect? (2 Marks)	CO4	K4
39.	What is the trend in electronegativity across the p-block elements, and how does this affect their reactivity?	CO4	K4
40.	Discuss the shape and characteristics of d orbitals. How many d orbitals are there for a given principal quantum number, and what are their shapes?	CO4	K4
41.	 a) Write the structural formulae for the following: (2 x 1 = 2 Marks) (i) 2-Methyl-2-penten-1-ol (ii) 3-Methylpentan-2-one b) Distinguish between inductive and electromeric effect. (3 Marks) 	CO4	K4
42.	State Soddy's radioactive displacement law. How does it describe the changes in atomic and mass numbers during alpha and beta decay?	CO4	K4
	SECTION – E Answer any TWO of the following: (2 x 10 = 20 Marks)	СО	KL
43.	a. Predict the product and identify the name for the following reactions: (3 x 2 = 6 Marks) FeBr ₃ ?		
	(ii) H ← CI H ← EtO- ?		
	(iii) NaBH ₄ ? Ethanol		
	b. Analyse the radioactive disintegration of 4n and 4n+1 series. (4 Marks)	CO5	K5
	(OR)		

..6

	a) What is the Geiger–Nuttall rule, Discuss the characteristics of α,β and γ		
	rays (2+5 Marks)		
	b) Determine the Effective Nuclear Charge for a 1s Electron in Lithium	CO5	K5
	(Li). Atomic number of Li is 3 (3 Marks)	003	KJ
44.	a) How did Dobe's theory explain the line spectrum of hydrogen?		
44.	a) How did Bohr's theory explain the line spectrum of hydrogen? (7 Marks)		
	b) Explain Bronsted Lowry concept of acids and bases		
	(3 Marks)		
	(OR)		
	a) Identify the missing species and type of nuclear reactions in the following: $(3 \times 2 = 6 \text{ Marks})$ $(i) {}^{11}_{6}C \rightarrow \underline{\hspace{1cm}} + {}^{0}_{1}e + v$ $(ii) {}^{238}_{92}U \rightarrow \underline{\hspace{1cm}} + {}^{1}_{2}\alpha$ $(iii) {}^{2}_{1}H + {}^{3}_{1}H \rightarrow \underline{\hspace{1cm}} + {}^{1}_{0}n$ b) Evaluate the intermediates formed in the given reactions: $(4 \times 1 = 4 \text{ Marks})$ $(i) H_{3}C \qquad OH$	CO5	K5
	(iii) Ph Br		
	(iv) $+ \mathring{N}O_2$		