STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086

(For candidates admitted from the academic year 2023 & thereafter)

SUBJECT CODE: 23CH/MC/GC 14

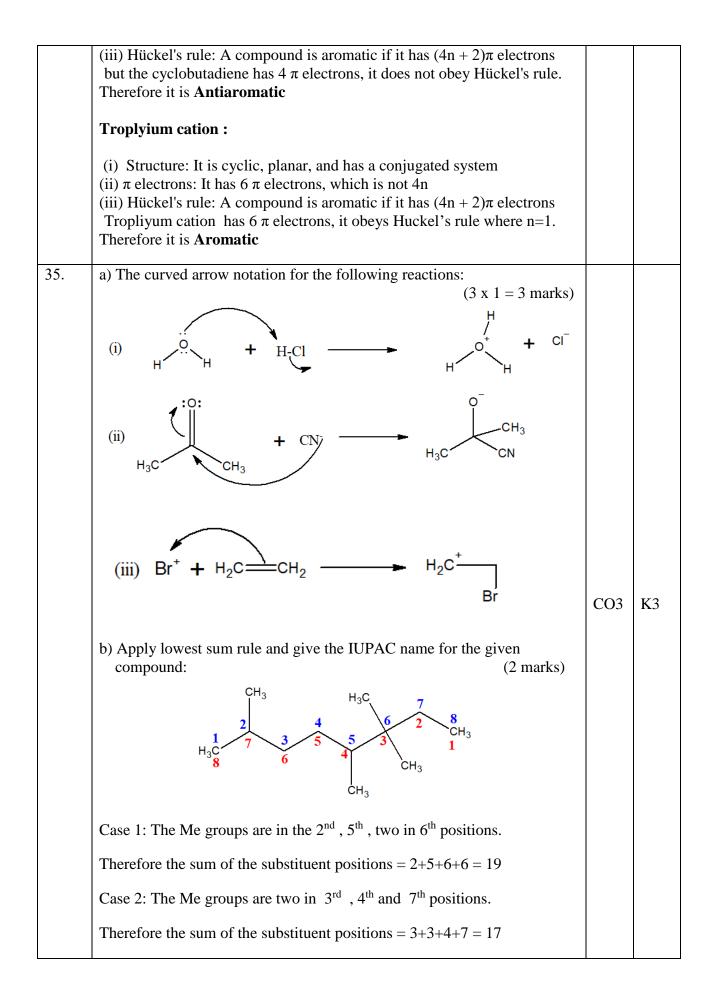
B.Sc. DEGREE EXAMINATION, NOVEMBER 2024

BRANCH IV – CHEMISTRY

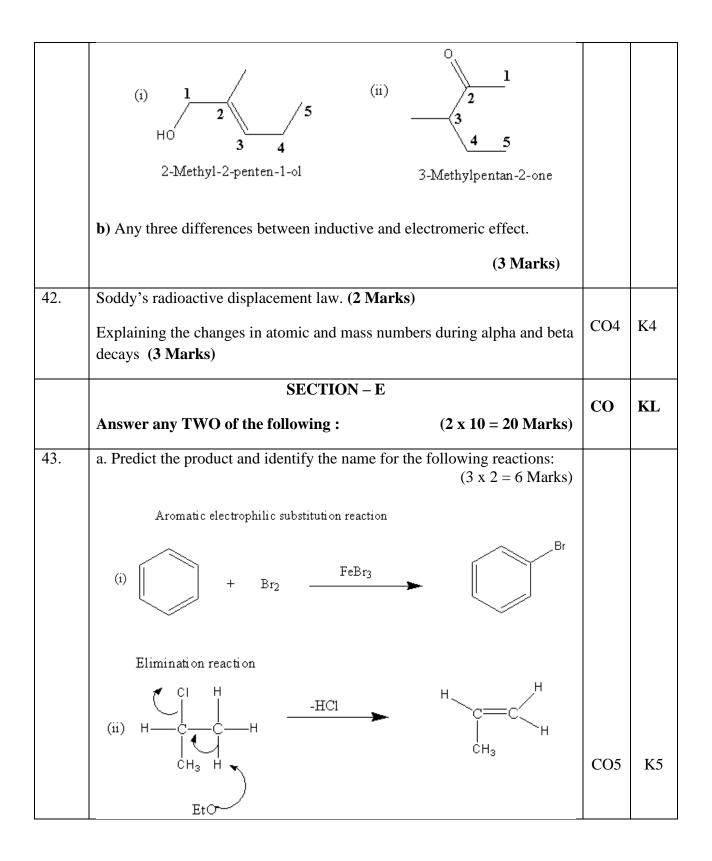
FIRST SEMESTER

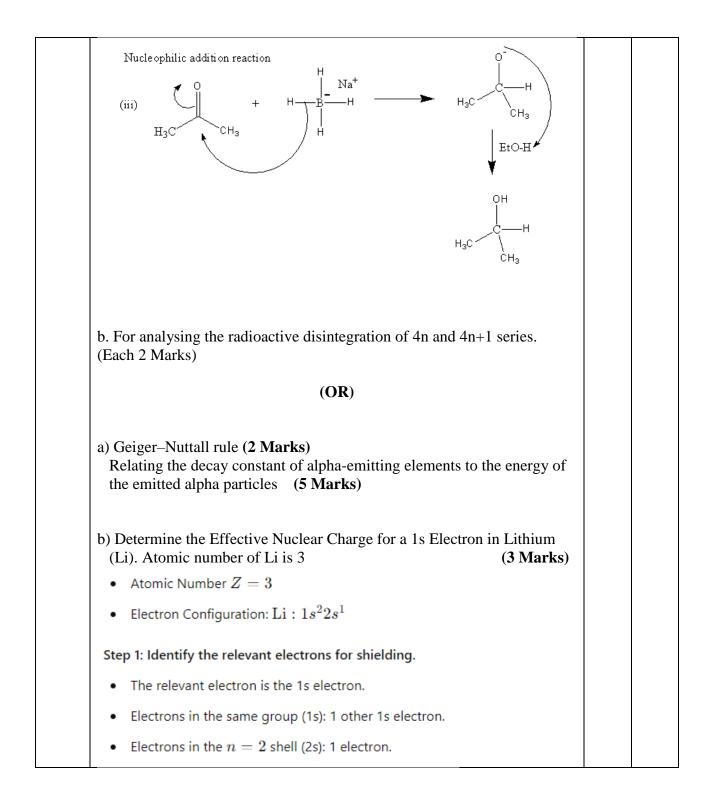
COURSE	: MAJOR CORE
TITLE OF PAPER	: GENERAL CHEMISTRY
DURATION	: 3 HOURS

MAX. MARKS: 100

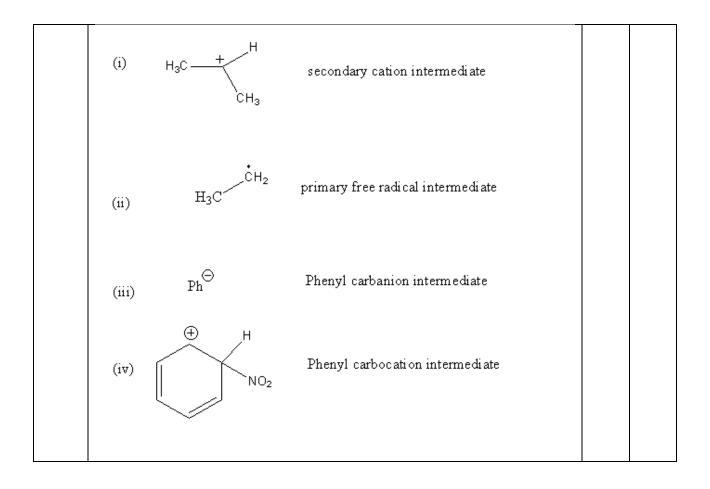

SCHEME

Q.No.	SECTION-A	со	KL
	MULTIPLE CHOICE QUESTIONS: (15 x 1 = 15 Marks)		
1.	The maximum number of electrons that can be accommodated in the third shell (M-shell) isa) 18	CO1	K1
2.	The de Broglie wavelength is associated with b) all moving particles	CO1	K1
3.	The mathematical expression for Heisenberg's uncertainty principle is a) $\Delta x. \Delta p \ge \frac{\hbar}{2}$	CO1	K1
4.	A normalized wave function satisfies the condition(b) The integral of the square of the wave function over all space is one	CO1	K1
5.	Which of the following pairs exhibit diagonal relationship in the periodic table?b) Li and Mg	CO1	K1


Ionization energy generally increases across a period because:		
	CO1	K1
c) Atomic size decreases and nuclear charge increases.		
A metal ion with low polarizability and high charge density is classified as	CO1	K1
is an example of Lux Flood acid.	CO1	K1
b) SO ₃		
Which of the following is an electrophile?	CO1	K1
c) NO ₂ +	001	
is an electrophilic substitution reaction	CO1	K1
b) Bromination of benzene	COI	KI
The cyclopropenyl cation is considered aromatic because it has	CO1	V1
c) 2π electrons.	COI	K1
Which of the following is NOT true about the screening effect?	CO1	K1
d) It remains constant as the atomic number increases in a period	COI	K1
For a given principal quantum number $n = 3$, what are the possible values		
	CO1	K1
c) 0, 1, 2		
The prefix name of -CONH ₂ is		
c) carbamoyal		
Identify the order of stability of the given intermediates.		
(i) $H_3C \xrightarrow{\bullet} C \xrightarrow{H_2} CH_3$ (ii) $C_6H_5 \xrightarrow{H_2} CH_3$ (iii) $H_3C \xrightarrow{\bullet} CH_2$	CO1	K1
d) (ii) > (i) > (iii)		
SECTION- B		
FILL IN THE BLANKS: (5 x 1 = 5 Marks)	СО	KL
The energy required to remove an electron from an atom in its gaseous state is called ionisation energy	CO2	K2
	a) A hard acid a) A hard acid b) Bromination of Lux Flood acid. b) Bromination of benzene The cyclopropenyl cation is considered aromatic because it has c) 2 π electrons. Which of the following is NOT true about the screening effect? d) It remains constant as the atomic number increases in a period For a given principal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values of the azimuthal quantum number $n = 3$, what are the possible values (i) $H_3C C - C - C - C - C - C - C - C - C$	c) Atomic size decreases and nuclear charge increases.COIA metal ion with low polarizability and high charge density is classified as a) A hard acidCOI


17.	An atom with atomic number 17 and mass number 35 will have <u>18</u> neutrons.	CO2	K2
18.	The time-independent Schrödinger equation is $ \nabla^2 \psi - \frac{2m}{\hbar^2} (E - V) \psi = 0 $	CO2	K2
19.	The Compton shift depends on <u>the angle of scattering.</u>	CO2	K2
20.	The <u>inductive</u> effect involves the permanent shift of electron density through sigma bonds caused by differences in electronegativity.		K2
	MATCH THE FOLLOWING: (5 x 1 = 5 Marks)	СО	KL
21.	Ernest RutherfordA. Artificial radioactivity (25)	CO2	K2
22.	ThomsonB. eigen values real (23)	CO2	K2
23.	Hermitian operatorC. screening effect (24)	CO2	K2
24.	Slater rule D. plum pudding model (22)	CO2	K2
25.	Irène Joliot-CurieE. Nuclear Model (21)	CO2	K2
	ANSWER IN ONE OR TWO LINES:(5 x 1 = 5 Marks)	СО	KL
26.	What is hyperconjugation?It is a permanent effect in which localization of σ electrons of C-H bond of an alkyl group directly attached to an atom of the unsaturated system.	CO2	K2
27.	What are isobars? Atoms of different elements with different atomic numbers but have the	CO2	K2
	same mass number.		
28.		CO2	K2
28.	same mass number. What is photo electric effect? The photoelectric effect is a phenomenon in which electrons are ejected	CO2 CO2	K2 K2

	It is the effect of solvent on the properties of acids and bases.		
	SECTION-CAnswer any SIX of the following:(6 x 5 = 30 Marks)	со	KL
31.	a) The explanation of Davisson-Germer experiment that confirms the wave nature of electrons.(3 Marks)b) Let's apply the operator $\hat{A} = d/dx$ to the function $\psi(x) = e^{kx}$ $\hat{A}(e^{kx}) = \frac{d}{dx}e^{kx} = ke^{kx}$ Since the result is proportional to e^{kx} , the function e^{kx} is an eigen function of the operator	CO3	К3
	$\hat{A} = d/dx$, and the corresponding eigen value is k (2 Marks)		
32.	The general trends that are observed for atomic radii and ionization energy as you move down a group in the periodic table $(2 \frac{1}{2} + 2 \frac{1}{2} \text{ Marks})$	CO3	K3
33.	a) Iron-56 (${}^{56}_{26}$ Fe) has an atomic number (Z) of 26, meaning it has 26 protons. The mass number (A) is 56, which is the sum of protons and neutrons: A = p + n = 26 + n n = A - p = 56 - 26 = 30 So, iron-56 has 30 neutrons and 26 protons. $\frac{n}{p} = \frac{30}{26} \approx 1.15$ The n/p ratio of 1.15 indicates that $\frac{56}{26}$ Fe is stable. (3 Marks) b) Any two applications of HSAB. (2 Marks)	CO3	К3
34.	 Cyclopentadienyl cation: (i) Structure: It is cyclic, planar, and has a conjugated system (ii) π electrons: It has 4 π electrons, which is 4n where n=1 (iii) Hückel's rule: A compound is aromatic if it has (4n + 2)π electrons but the cyclopentadienyl cation has 4 π electrons. Therefore it is Antiaromatic Cyclobutadiene: (i) Structure: It is cyclic, planar, and has a conjugated system (ii) π electrons: It has 4 π electrons, which is 4n where n=1 	CO3	К3



	In above two cases the sum of the positions of the substituents is found to be minimum in Case 2. (1 ¹ / ₂ Marks)		
	Therefore the IUPAC name of the given compound is		
	3,3,4,7- tetradimethyl octane. (1/2 Marks)		
36.	Five postulates of quantum mechanics. (Each 1 Mark)	CO3	K3
37.	The stability of carbocations. (1 Mark)		
	Factors influence their stability (3 Marks)	CO3	К3
	Examples of primary, secondary, and tertiary carbocations. (1 Mark)		
	SECTION-D	co	171
	Answer any FOUR of the following : $(4 \times 5 = 20 \text{ Marks})$	CO	KL
38.	a) Calculate the mass defect and binding energy for U-235. One U-235 atom has a mass of 235.043924 amu. (3 Marks) Solution: Step 1: Calculate the mass defect (2 Marks) $\Delta m = [Z(m_p + m_e) + (A - Z)m_n] - m_{atom}$ $\Delta m = [92(1.007826 \text{ amu}) + (235 - 92)1.008665 \text{ amu}]$ -235.043924 amu $\Delta m = 1.91517 \text{ amu}$ Step 2: Use the mass defect to calculate the BE (1 Mark) BE $= \Delta m \left(\frac{931.5 \text{ MeV}}{1 \text{ amu}}\right)$ BE $= 1.91517 \text{ amu} \left(\frac{931.5 \text{ MeV}}{1 \text{ amu}}\right)$ = 1784 MeV If only the formula is written correctly then 1 Mark can be given. b) Correct statement for Compton effect (2 Marks)	CO4	K4
39.	The trend in electronegativity across the p-block elements (2 Marks)Its affect towards their reactivity (3 Marks)	CO4	K4
40.	Discussion on the shape and characteristics of d orbitals (2 Marks)		
	The number of d orbitals for a given principal quantum number, and are their shapes (3 Marks)	CO4	K4
41.	a) Write the structural formulae for the following : (2 x 1 = 2 Marks)	CO4	K4

	Step 2: Apply Slater's rules to calculate the shielding constant S :		
	1s electrons:		
	• Other 1s electron contributes 0.35.		
	$S_{1s}=0.35$		
	• 2s electron:		
	• Contributes 0.00 since it is in a higher shell.		
	$S_{2s}=0$		
	Total Shielding Constant S :		
	S = 0.35 + 0 = 0.35		
	Step 3: Calculate $Z_{ m eff}$:		
	$Z_{ m eff} = Z - S = 3 - 0.35 = 2.65$		
	Answer: The effective nuclear charge for a 1s electron in lithium is 2.65.		
44.	a) Bohr's theory and explaining the line spectrum of hydrogen. (2+5 Marks)		
	 b) Polar protic solvent (1 Mark) Effect of protic solvent in acid- base strength (2 Marks) 		
	(OR)		
	a) Identify the missing species and type of nuclear reactions in the following: $(3 \times 2 = 6)$ Marks)	CO5	K5
	(i) ${}^{11}_{6}C \rightarrow \underline{{}^{11}_{7}N} + {}^{0}_{+1}e + v$ (positron emission)		
	(ii) $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}\alpha$ (alpha emission)		
	(iii) ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n$ (neutrino emission)		
	b) Evaluate the intermediates formed in the given reactions: (4 x1 = 4 Marks)		

