STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023-24)

B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH III - PHYSICS THIRD SEMESTER

COURSE : ALLIED CORE

PAPER : FUNDAMENTALS OF CHEMISTRY- I

SUBJECT CODE : 23CH/AC/FC33

TIME : 3 HOURS MAX.MARKS :100

Q.No.	SECTION - A MULTIPLE CHOICE QUESTIONS: (15 x 1 = 15 Marks)	СО	KL
1.	MULTIPLE CHOICE QUESTIONS: (15 x 1 = 15 Marks) The stability of carbonium ion follows the order a) tertiary > secondary > primary b) primary > secondary > tertiary c) secondary > tertiary > primary d) tertiary > primary > secondary	CO1	K1
2.	The monomer from which nylon 6,6 is made is a) oxalic acid b) adipic acid c) acetic acid d) lactic acid	CO1	K1
3.	is derivative of an acid a) amide b) aldehyde c) ketone d) alcohol	CO1	K1
4.	Which of the following is not an electrophile a) H ⁺ b) BF ₃ c) Cl ⁺ d) H ₂ C=CH ₂	CO1	K1
5.	Free radical is an example of a) transition state b) reactive intermediate c) negatively charged species d) positively charged species	CO1	K1
6.	Test used to identify a monosaccharide from a disaccharide isa) Benedicts b) Iodine c) Barfoed's d) Molisch	CO1	K1
7.	Example of a polyprotic acid is a) Oxalic acid b) Hydrofluoric acid c) Acetic acid d) Hydrochloric acid	CO1	K1
8.	Synthetic polymer among the following is a) Cellulose rayon b) Nylon c) Cotton d) wool	CO1	K1
9.	Example for quaternary structure of protein is a) enzymes b) hemoglobin c) aminoacid d) dacron	CO1	K1
10.	The number of peptide bonds in gly-cys-ala-tyr isa) 3 b) 2 c) 4 d) 5	CO1	K1
11.	The number of stereoisomers for glucose is a) 16 b) 8 c) 2 d) 4	CO1	K1
12.	The number of hyper conjugative resonance structures for isopropyl free radical is a) 9 b) 6 c) 5 d) 4	CO1	K1

13.	The number of functional groups present in the compound		
	H ₃ C COOEt	CO1	K1
	a) 3 b) 2 c) 4 d) 1		
14.	Homolytic fission results in the formation of		
	a) carbenes b) carbocations c) carbanion d) free radicals	CO1	K1
15.	pH is expressed as		
	a)- $\log [H^+]$ b) $\log [H^+]$ c) $[H^+] [OH^-]$ d) $[H^+] / [OH^-]$	CO1	K1

	SECTION - B FILL IN THE BLANKS: (5 x 1 = 5 Marks)	СО	KL
16.	Starch is made up ofand	CO2	K2
17.	is an aliphatic amino acid.	CO2	K2
18.	Expansion of PTFE is	CO2	K2
19.	Decomposition of acetaldehyde is aorder reaction.	CO2	K2
20.	pH of human blood is maintained bybuffer system.	CO2	K2

	MATCH THE FOL	LOWING: $(5 \times 1 = 5 \text{ Marks})$	CO	KL
21.	Bakelite	A. Natural rubber	CO2	K2
22.	Maltose	B. Lewis base	CO2	K2
23.	cis-polyisoprene	C. Aromatic amino acid	CO2	K2
24.	Ammonia	D. Disaccharide	CO2	K2
25.	Tyrosine	E. Condensation polymer	CO2	K2

	ANSWER IN ONE / TWO LINES : $(5 \times 1 = 5 \text{ Marks})$	CO	KL
26.	What is Ostwald's dilution law?	CO2	K2
27.	Define zwitter ion.	CO2	K2
28.	What is heterolytic fission?	CO2	K2
29.	Give examples of Bronsted bases.	CO2	K2
30.	What is a buffer?	CO2	K2

	SECTION – C	CO	KL
	Answer any SIX questions: $(6 \times 5 = 30 \text{ Marks})$	CO	KL
31.	Discuss the free radical mechanism of addition polymerisation	CO3	K3
32.	a) Distinguish between biodegradable and non-biodegradable polymersb) explain denaturation of proteins with an example. (3+2)	CO3	К3
33.	Derive the expression for the rate constant of a first order reaction.	CO3	K3
34.	Draw and identify the functional groups present in a) Glucose b) Tryptophan c) Lactic acid (2+2+1)	CO3	К3
35.	Draw the Haworth and Fischer projections of Fructose $(2 \times 2^{1/2} = 5 \text{ Marks})$	CO3	К3
36.	Differentiate between order and molecularity	CO3	К3
37.	a) Write a short note on the classification of Nucleophiles with examples.b) Discuss at least two differences between homolytic fission and heterolytic fission. (3+2)	СОЗ	К3

	SECTION – D	CO	KL
	Answer any FOUR questions: $(4 \times 5 = 20 \text{ Marks})$	CO	KL
38.	a) What is isoelectric point? Explain its significance.	CO4	K4
	b) Draw the polypeptide structure, represent the bond angles. (3+2)	CO4	N4
39.	Derive the K _a expression for weak acid.	CO4	K4
40.	a) What is Teflon? Give its uses.	CO4	K4
	b) Draw the structure of propanamide and chlorocyclopentanol (3+2)	CO4	N4
41.	Differentiate between amylose and amylopectin components of starch.	CO4	K4
42.	What is pH? Explain the importance of the pH scale.	CO4	K4

	SECTION – E	CO	KL
	Answer any TWO questions: $(2 \times 10 = 20 \text{ Marks})$	CO	KL
43.	Discuss the salient features of primary, secondary, tertiary and quaternary structure of proteins.	CO5	K5
44.	a) Describe addition, substitution and elimination reactions with examples.b) Explain the structure of a carbocation . (6+4)	CO5	K5
45.	a) Derive Henderson-Hasselbalch equation for a basic buffer b) Draw the structure and discuss the applications of (i) PVC (ii) Polyethylene (5+5)	CO5	K5
46.	a) Illustrate with equations a) Osazone test b) Fehling's test b) Significance of Arrhenius equation (5+5)	CO5	K5
