STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2023 – 24)

B.Sc. DEGREE EXAMINATION, NOVEMBER 2024 BRANCH IV- CHEMISTRY THIRD SEMESTER

COURSE : MAJOR CORE

PAPER : PHYSICAL CHEMISTRY - I

SUBJECT CODE : 23CH/MC/PC33

TIME : 3 HOURS MAX.MARKS :100

O No	SECTION-A	CO	T/I
Q.No.	Answer all questions (15x1=15 marks)	CO	KL
1.	The radius ratio in an ionic crystal lies between 0.732 -1.000, the		
	coordination number is	CO1	K1
	a) 4 b) 6 c) 8 d) 12		
2.	The number of atoms in a unit cell of a face centered cube is	CO1	K1
2.	a) 2 b) 4 c) 6 d) 8	COI	17.1
3.	The pH of 0.001M HCl is	CO1	K 1
	a) 1 b) 4 c) 3 d) 0.001	001	111
	The fraction of total molecules which is ionised in a solution of an		
4.	electrolyte is known as	CO1	K 1
	a) dissociation constant b) mol fraction of the electrolyte		121
	c) degree of dissociation d) electrolyte constant		
	Acetic acid is a weak electrolyte because of		
5.	a) Its molecular weight b) it exists as a dimer	CO1	K1
	c) it is highly unstable d) it has low ionisation		
	For the plane that intersects the x-axis at 3, y-axis at 2 and z-axis at		
6.	infinity the Miller index is	CO1	K1
	a) (320) b) (211) c) (230) d) (101)		
	The substances which retain their magnetic field when removed from		
7.	the magnetic field are called	CO1	K 1
	a) paramagnetic b) diamagnetic		
	c) ferrimagnetic d) ferromagnetic		
	The net dipole moment of the molecule is		
	a) sum of all individual bond moments		
8.	b) product of all individual bond moments	CO1	K1
	c) vector resultant of all the individual bond moments		
	d) difference of all individual bond moments.		
9.	The hydrolysis constant Kh of a weak base and a strong acid is	CO1	K 1
	to the dissociation constant K_b of the base		
	a) directly proportional b) inversely proportional		
	c) equal d) not equal		
10.	NaCN on hydrolysis produces a solution which has	CO1	K 1
	a) $pH > 7$ b) $pH = 7$ c) $pH < 7$ d) $pH = 1$		

	The solubility of an electrolyte of type AB ₂ is s, the expressions for		
11.	solubility product is	CO1	K1
	a) $K_{sp} = s^2$ b) $K_{sp} = 4s^2$ c) $K_{sp} = 3s^3$ d) $K_{sp} = 4s^3$		
12.	The addition of HCl will not suppress the ionization of	CO1 k	K1
	a) CH ₃ COOH b) H ₂ SO ₄ c) H ₂ S d) C ₆ H ₅ COOH		K1
13.	The solubility of Mg(OH) ₂ is $\sqrt{2}$ its solubility product is	CO1	K1
	a) 8 b) $4\sqrt{2}$ c) $8\sqrt{2}$ d) $9\sqrt{2}$		Νl
	Which of the following pairs of electrolyte will show common ion		
14.	effect?	CO1	K1
	a) HCl +HNO ₃ b) HCl+H ₂ S c) HCl + H ₂ SO ₄ d) HCl+NaCl		
	In cubic close packed pattern of a metallic crystal, the coordination no		
15.	is	CO1	K1
	a) 12 b) 8 c) 6 d) 4		

	SECTION- B		
	Answer all the questions (15 x 1 = 15 Marks) Fill in the blanks	СО	KL
16.	Ostwald's dilution law is applicable forelectrolytes	CO2	K2
17.	Smectic liquid crystals have structure	CO2	K2
18.	The paramagnetism is due to the presence of	CO2	K2
19.	Molecules or ions that can behave both as Bronsted acid and base are called	CO2	K2
20.	pKw is represented as	CO2	K2
21.	Liquid crystals have property of a solid	CO2	K2
22.	Example for Lewis acid is	CO2	K2
23.	The ionic product of water will increase when the temperature	CO2	K2
24.	The degree of hydrolysis of a weak base and a strong acid is given by the relation	CO2	K2
25.	The number of atoms present in body-centered unit cell is	CO2	K2
	Answer in a line or two	CO2	K2
26.	The pH of a solution is 3. Calculate the hydrogen ion concentration .	CO2	K2
27.	Give the expression for the solubility product of Al(OH) ₃ .	CO2	K2
28.	Calculate Miller indices of a crystal plane which is cut through the crystal axes 2a,-3b,-c.	CO2	K2
29.	What is the expression for dipole moment?	CO2	K2
30.	Give the expression for Henderson's equation of basic buffer.	CO2	K2

	SECTION- C		
	Answer any 6 questions $(6 \times 5 = 30 \text{ Marks})$	CO	KL
	a) The solubility of BaSO ₄ is 2.33×10^{-4} gm/ml at 20 ° C. Calculate the		
31.	solubility product of BaSO ₄ .	CO3	К3
	b) What is law of rational index? (3+2)		
32.	Derive Bragg equation and describe the investigation of the internal	CO3	К3
32.	structure of a solid by using Bragg method.	CO3	KS
	a) The dissociation constants of formic and acetic acid are 21.4×10^{-4}		
33.	and 1.81×10^{-5} respectively. Find the relative strength of the acids	CO3	K3
	b) Explain the Common ion effect with one example (3+2)		
	a) Calculate the pH of a 0.01 M solution of NH ₄ OH s, the Dissociation		
34.	constant of NH ₄ OH is 1.8×10^{-5} .	CO3	K3
	b) Explain the Buffer solution with one example. (3+2)		
35.	Describe the structure of ZnS	CO3	К3
36.	Explain the classification of liquid crystals according to molecular	CO3	K3
30.	rearrangement.	203	IX.3
37.	Explain dipole moment of H ₂ O and CO ₂ .	CO3	К3

	SECTION- D	CO	KL
	Answer any four questions $(4x 5 = 20 \text{ marks})$	CO	KL
38.	Describe the measurement dipole moment of a substance using Clausius – Mussotti equation.	CO4	K4
39.	Derive Henderson-Hasselbach equation for an acidic buffer.	CO4	K4
40.	 a) Calculate the pH at 25 °C containing 0.1 M CH₃COONa and 0.03 M CH₃ COOH .pK_a for CH₃COOH = 4.57. b) Discuss the buffer action of aqueous solution of ammonium acetate. 	CO4	K4
41.	 a) Find the degree of dissociation of HF in 1M aqueous solution. The value of Ka is 7.2 × 10 ⁻⁴. b) Give any 2 factors which influence the degree of dissociation. (3+2) 	CO4	K4
42.	a) Differentiate between permanent and induced electric dipole moments.b) Identify cis and trans isomers using dipole moment. (3+2)	CO4	K4

	SECTION E	СО	KL
	Answer any two questions $(2 \times 10 = 20 \text{ Marks})$		
43.	a) Describe the structure of NaCl		
	b) Calculate the angle at which second-order diffraction will appear in		
	a X-ray spectrophotometer when X-rays of wavelength 1.5 Å are		
	used and the interplanar distance is 4.04 Å. (6+4)	CO5	K5
	(OR)		
	Elucidate the XRD pattern for simple and bcc lattice systems.		
44.	a) State and explain Lowry- Bronsted theory and Lewis's theory of		
	acids and bases.		
	b) Explain polyprotic acids with an example (7+3)		
	(OR)		
	a) Calculate the concentration of sodium formate (HCOONa) that must		
	be present in a 0.01 M solution of formic acid to produce a pH	CO5	K5
	of 3.80 K_a for formic acid is 1.8×10^{-4}		
	b) Discuss the separation of basic ions into groups by using solubility		
	product principle (4+6)		

