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Abstract

Physical laws and processes have profoundly influenced plant evolution. Their effects are invariably size dependent 
and thus subject to scaling as well as biophysical analyses even though these effects differ depending upon the fluid 
(water or air) in which plants evolve. Although organisms cannot obviate the effects of physical laws and processes, 
the consequences of these effects can be altered by ontogenetic or phylogenetic alterations in geometry, shape, or 
orientation as well as in body size. These assertions are examined using theoretical insights and empirical data drawn 
from extant and fossil plants pertinent to four evolutionary transitions: (1) the evolution of multicellularity, (2) the 
transition from an aquatic to an aerial habitat, (3) the evolution of vascular tissues, and (4) the evolution of secondary 
growth by the independent acquisition of cambia. This examination shows how physical laws limit phenotypic expres-
sion, but how they also simultaneously provide alternative, potentially adaptive possibilities.
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Introduction

Understanding biophysics informs our understanding of 
plant ecology and evolution because (1) regardless of its 
habitat or phyletic history, every plant must exchange gases 
with the atmosphere, conduct fluids, intercept light, cope with 
mechanical forces, and reproduce; and (2) each of these func-
tions is governed to some degree by the operation of physi-
cal laws and processes (Gates, 1980; Niklas, 1992; Nobel, 
2005; Read and Stokes, 2006; Niklas and Spatz, 2012). For 
these reasons, it is possible to view organic evolution as an 
extended ‘experiment’ in how organisms respond to and cope 
with the laws governing chemical and physical phenomena. 
This assertion extends from the cellular mechanisms control-
ling the future planes of cell division to ecosystem function. 
It is tempered however with the recognition that evolution is 
as much the result of crisis-driven extinctions and historical 
accidents (Gould, 1989) as it is the result of unavoidable and 
persistent physical phenomena. The challenge is to separate 
the consequences of historical legacy from the effects of these 
phenomena.

Another assertion is that the effects of physical laws and 
processes are size dependent (Huxley, 1932; Niklas, 1994a, 
2004) even at the level of individual cells (e.g. Sperry et al., 
2006). To paraphrase JHS Haldane’s zoological metaphor, a 
poppy seed hitting a hard floor after falling a great height 
behaves differently from a coconut simply because of a differ-
ence in mass. It is critical, therefore, to consider evolution in 
terms of size-dependent (scaling) relationships, particularly 
since the fossil record reveals numerous changes in vegeta-
tive and reproductive size (e.g. Mosbrugger, 1990; Tiffney, 
2004). The challenge here is to determine whether the scaling 
relationships observed for extant plants held true for fossil 
plants. For example, the leaf spectrum for functional traits 
indicates that extant plants with large leaves, on average, have 
thick twigs and that plants with thick twigs tend to branch 
more sparingly than plants with thin twigs that typically bear 
smaller leaves (Westoby and Wright, 2003; Olson et al., 2009). 
If  these ‘rules’ (known as Corner’s rules) describe something 
essential about all plants, they will also hold for Phanerozoic 
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floras. If  not, they reflect something about modern plants, not 
something universally true. The key to resolving this issue is 
to understand mechanistically how and why organisms con-
verge on certain proportionalities.

A third assertion is that evolution occurs in two very differ-
ent fluids, water and air, which has important consequences 
because the effects of physical laws differs in these two flu-
ids. Fortunately, dimensionless numbers such as the Reynolds 
number (Table  1) and dimensional analyses can be used to 
address how physical phenomena operate in different fluids. 
Thus, plants should be defined broadly as eukaryotic photo-
autotrophs to encompass the rhodophytes and stramenopiles 
as well as the chlorobionta (which includes the embryophytes 
and the charophycean algae). The breadth of this definition 
is necessary because the ability to photosynthesize, synthesize 
cell walls, and evolve multicellular body plans has occurred 
independently at least six times and with varying degrees of 
success (Niklas and Newman, 2013). For example, consider 
the diversity of materials used to construct plant cell walls 
(Niklas, 2004), such as silica in diatom frustules and cellulose 
in land plant cells (with Young’s elastic moduli in the range of 
0.35–2.77 GPa and 110–220 GPa, respectively). Is it possible 
that the mechanical and chemical architecture of cellulosic 
cell walls was one key to the success of the land plants?

A fourth and final assertion deals with the equations 
describing the operation of physical laws and processes 
(Table 1). Inspection of these expressions reveals two types 
of parameters – those that cannot be changed by biological 
modifications and those that can be changed either ontogenet-
ically or phylogenetically. Consider, for example, passive dif-
fusion. The diffusivity of a substance cannot be altered by an 
organism, whereas the concentration gradient of a substance 
can be changed biologically by altering its consumption or 
production or by changing the distance between its source 
and sink (Gates, 1980; Nobel, 2005) – a feature that helps to 
explain why most algae have thin body plans with large sur-
face areas. The existence of these two types of parameters is 
important because it shows that evolution is constrained by 
physical laws, but that the effects of these laws can be modi-
fied by biological innovation.

Given the huge scope of the topic at hand, the following 
sections can only illustrate broadly how a biophysical and 
size-dependent perspective informs our understanding of 
evolution. These sections are devoted to four important evo-
lutionary transitions: (1) the transition from a unicellular to 
multicellular body plans, which involved micromechanical 
adjustments to the planes of cell division; (2) the transition 
from an aquatic to an aerial existence, which involved adjust-
ments of pre-existing charophycean-like morphological and 
chemical characteristics; (3) the evolution of the vascular 
plants, which involved additional adjustments to symplastic 
and apoplastic transport systems, programmed cell death, 
and cell-wall patterning; and (4) the transition from primary 
to secondary growth, which involved convergent solutions 
to coping with drag forces and increasingly larger bending 
moments. An important feature appearing in each of these 
transitions is the role of tradeoffs resulting from the simul-
taneous performance of biological functions with conflicting 
physical requirements. These tradeoffs confined phenotypic 
expressions to specific morphological domains, but they also 
produced opportunities to expand or create new ones – a fea-
ture discussed in the concluding section.

The unicellular to multicellular transition

Fick’s second law of diffusion reveals the advantages of being 
a small unicellular organism with a large surface area with 
respect to volume (Nobel, 2005), since this condition expe-
dites the exchange of mass and energy between a cell and 
water (Table  1). Nevertheless, multicellularity has evolved 
at least twice in the rhodophytes, in the stramenopiles, and 
in the chlorobionta (Niklas and Newman, 2013). This con-
vergence gives the impression that multicellularity conveys 
adaptive benefits. However, it is not always true that every 
evolutionary change requires a substantive or even measur-
able selective advantage (Grosberg and Strathmann, 2007; 
Lynch, 2012). Nor is it true that phenotypic responses to 
selection invariably conform to the direction of an adaptive 
advantage (Bonduriansky and Day, 2009). Thus, a theoretical 
model for filamentous bacteria shows that strains with the 
same fitness can produce genotypes differing in cell number 

Table 1.  Representative physical relationships, their quantitative 
expressions, and parameters that cannot be changed biologically. 
∂Ci/∂x = concentration gradient of substance i; –∂P/∂l = negative 
hydrostatic pressure gradient; A = π r2; Ap = projected area; 
C = taper-dependent proportionality factor (e.g. C = 1.96 for a 
cone); CD = drag coefficient; d = reference dimension; Df = drag 
force; Di = diffusivity of substance i; E = Young’s modulus; 
g = acceleration due to gravity; Hcrit = critical buckling height; 
Ji = flux rate of substance i; r = radius; U = flow speed;  
Δ Ci = change in concentration of substance i; Δ V/Δ t = volumetric 
flow rate; δ = boundary layer thickness; µ = dynamic viscosity; 
ρ  = bulk tissue density (or fluid density in drag force equation); 
υ = kinematic viscosity. For more information on the quantitative 
expressions, see Niklas and Spatz (2012). 
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as a result of differences in cell division and death rates, or 
as a result of changes in the environmental carrying capac-
ity (Rossetti et  al., 2011). This model, which has empirical 
support, also shows that differences in fitness attributable 
to morphology are not required a priori for the evolution of 
life cycles with multicellular entities (Rossetti et  al., 2011), 
although advantages may arise subsequently (Koschwanez 
et al., 2011). The retention of multicellularity in some line-
ages therefore may reflect a largely random tend to increase 
in body size (Gould, 1989). Indeed, although examples are 
known of unicellular species arising from multicellular ances-
tors (Velicer et al., 1998; Schirrmeister et al., 2011), once an 
organism achieves multicellularity its capacity for contingent 
evolutionary reversion to the unicellular condition is reduced 
for reasons that have little or nothing to do with selection on 
fitness.

Regardless of whether multicellularity reflects the direct 
consequence of natural selection, cladistic analyses reveal 
that its acquisition releases organisms from functioning as 
gametes (which is the fate of most unicellular eukaryotes), 
lengthens the diploid phase in haploid–diploid life cycles 
(thereby expanding the genetic repertoire of gametes), and 
permits organisms to evolve a broader scope of phenotypic 
innovation as gene regulatory pathways increase in number or 
complexity (Bonner, 2004: Lane and Martin, 2010). However, 
the evolution of multicellular plants passed along a critical 
biophysical constraint: a relatively rigid cell wall (Niklas, 
2004; Graham et al., 2009). Consequently, cell division and 
morphogenesis occur in the absence of cell migration, a limi-
tation that has been resolved by programmed cell death, dif-
ferential asymmetric cell division, and anisotropic expansion 
(e.g. Geisler et al., 2000; De Smet and Beeckman, 2011), all 
of which take on particular importance in plant development 
(Kim and Zambryski, 2005; Torii, 2012).

The biophysics influencing the orientation and location 
of the future cell wall during cell division may be the most 
critical developmental feature in all of plant evolution, since 
it influences the complexity of the plant body plan (Niklas, 
2000). Among the charophycean algae and the embryophytes, 
the location of the future cell wall is prefigured by the appear-
ance of the preprophase band and the phragmoplast (Graham 
et al., 2009). The mechanisms underlying the orientation and 
location of these cytological features are not well understood. 
Early work showed that the application of pressure to a divid-
ing cell forced the mitotic figure into the position in which 
the longitudinal axis is oriented at right angles to the applied 
pressure such that the future cell wall is oriented parallel to 
this direction (Kny, 1902; Lynch and Lintilhac, 1997) and 
that the planes of successive division tend to be at right angles 
to one another such that regular patterns of two, four, eight, 
etc. form in one plane when cell divisions are simultaneous 
(Geitler, 1951), a geometric analogue of Errera’s rule.

More recent research using empirical data and computer 
simulations of cell division patterns indicates that multiple 
competing division planes exist, but that ‘smaller area’ con-
figurations are, on average, achieved if  significant differences 
exist in the surface areas of competing division planes (Besson 
and Dumais, 2011). Conversely, when small differences exist 

among competing planes of division, the probability of 
achieving the one with the minimal area is inversely propor-
tional to the difference in length of the division plane: in cells 
differing significantly in length, the shortest transverse divi-
sion planes are achieved, whereas competing planes of cell 
division with similar surface areas are achieved with near 
equal probability in polygonal cells.

Besson and Dumais (2011) further speculate that a micro-
tubule (MT) force-sensing system permits the MT cytoskel-
eton to mechanically move the nucleus into an equilibrium 
position. If  a nucleus is positioned off  centre during inter-
phase, the MTs tethering it to the plasma membrane will 
bring the nucleus to an equilibrium position based on differ-
ences in the tensile forces generated among MTs differing in 
length. Shorter rather than longer MTs would be favoured 
collectively to achieve an equilibrium configuration, which 
automatically coincides with the minimal area plane that con-
currently prefigures the formation of the pre-prophase band.

It is entirely reasonable to suggest that mechanically 
induced stresses are also involved in cell-wall orientation 
among embryophytes (Mirabet et  al., 2011). The simplest 
embryophyte cells are parenchyma cells with thin primary 
walls inflated by more or less uniformly distributed turgor 
(hydrostatic) pressure. However, at the vertices of adjoining 
cells, opposing tensile stresses are resolved into additional 
stresses acting in the radial direction on the angle of each 
vertex according to its size. In theory, the tensile stresses in 
walls at 180° should be equal and opposite and thus this angle 
experiences no additional radial stress from the resolution 
of the opposing tensile stresses in the two intersecting walls. 
However, these tensile stresses are resolved into progressively 
larger radial stresses as the angle of a vertex decreases, reach-
ing their maxima as the angle approaches 0°. Because these 
additional radial stresses are correlated directly to the size 
of the angle, stresses are correlated to angle size such that a 
cell reaches mechanical equilibrium at equiangular vertices. 
Consequently, the observation that the vertices in the region 
of isodiametrical expansion can act as ‘pivots’ for wall rota-
tion between successive divisions (so as to coincide with cel-
lular mechanical equilibria) provides some evidence for the 
mechanical regulation of cell shape.

However, most scenarios cannot explain the mechan-
ics of elongating cells, wherein existing walls rotate around 
their vertices to align either perpendicular or parallel to 
the longitudinal axis and future cell walls are generally ori-
ented perpendicular to the growth axis. Here, the principal 
stress trajectories likely resolve the global stress patterns 
into orthogonal components and are thus likely to be ori-
ented parallel and perpendicular to the growth axis. In this 
condition, cell walls may be oriented so as to minimize shear 
stresses, although it is becoming increasingly clear that differ-
ent mechanisms affecting cell-wall growth have evolved (see 
Campàs et al., 2012).

None of the preceding explains whether cell walls trans-
duce radial stresses directly into specific cell shapes or whether 
mechano-sensitive elements in the cell membrane or cytoskel-
eton take on or augment this function (Schopfer, 2006). What 
can be said is that the biophysical mechanism(s) regulating 
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the locations of new cell walls is (are) ancient and that they 
involve mechanical cues resulting from stresses induced by 
hydrostatic pressure acting on pre-existing cell walls (Mirabet 
et al., 2011).

The water to air transition

Chemical constraints as well as those imposed by physics 
played an important role in plant evolution, particularly in the 
transition from living in water to living in air. Small unicellu-
lar aquatic organisms have the advantages conveyed by Fick’s 
second law for passive diffusion (Table 1). However, terrestrial 
plants, which inhabit the air, have at least two advantages over 
their aquatic counterparts because even pure water absorbs 
all wavelengths of visible light and because even a thin layer 
of water can pose a significant barrier to the passive diffusion 
of CO2 and O2 (Gates, 1980; Nobel, 2005). It is therefore not 
surprising that most aquatic plants live close to the air–water 
interface, possess active CO2-uptake mechanisms (Raven, 
1991), and manifest an interspecific surface area to volume 
scaling relationship with a 3/4 (rather than a Euclidean 2/3) 
scaling exponent, which maximizes surface area with respect 
to volume as cell sizes increase (Fig. 1). Nor is it surprising 
that unicellular plants lacking carbonate pumps have repeat-
edly colonized the soil wherein the air–water interface is on 
a scale approximated by the dimensions of algal cells. This 
feature is particularly true of the green algae (Lewis and 
McCourt, 2004; Lewis and Lewis, 2005), perhaps because of 
their tolerance of a wide soil pH range.

One of these green plant invasions was particularly impor-
tant. Current phylogenies show that the charophycean algae 
are most closely related to the embryophytes (Graham, 1993; 
Lewis and McCourt, 2004; Archibald, 2009). The earliest 
charophycean colonists may have been unicellular soil dwell-
ers (Stebbins and Hill, 1980) or organisms participating in 
symbiotic relationships with fungi (Niklas and Kutschera, 
2010). However, based on the attributes of extant charo-
phytes most closely related to the embryophytes, the last 
common ancestor probably had plasmodesmata (Cook et al., 
1998), a filamentous body construction, and a physiological 

repertoire capable of polar auxin transport (Boot et al., 2012) 
and the ability to synthesize sporopollenin and lignin or simi-
lar polymers (Sørensen et  al., 2011). It also likely lacked a 
contiguous cuticular membrane. Plasmodesmata provide 
avenues for the passive and active transport of nutrients and 
phytohormones; a filamentous tissue construction maximizes 
surface area with respect to body volume and facilitates gas 
and water passive diffusion (Niklas, 2000); and the ability to 
synthesize desiccation- and degradation-resistant polymers 
provides advantages to a semi-terrestrial organism (Kroken 
et al., 1996; Graham et al., 2009).

These attributes nevertheless limit the ability of any plant to 
cope vegetatively with desiccation, thereby probably restrict-
ing growth and reproduction to habitats with free-standing 
water. The sexual life cycle of this ancestor probably involved 
the retention of egg cells within a multicellular structure that 
provided protection and nutrients before and perhaps after 
fertilization. The presence of degradation-resistant cell-wall 
layers, similar to sporopollenin, in the zygotes of green algae 
closely related to the embryophytes (Kroken et  al., 1996; 
Graham et al., 2009) may have provided a ‘seed bank’ mech-
anism permitting the ancestral species to persist in habitats 
subjected to periods of drying sufficient to kill adult plants, an 
attribute that would have provided a competitive advantage 
over other terrestrial colonists incapable of forming cyst-like 
zygotes. Finally, it is likely that the last common ancestor of 
the charophycean algae and the embryophytes had a haplobi-
ontic–haploid life cycle (Graham, 1993; Niklas and Kutschera, 
2010). Thus, the dominance of a multicellular diploid genera-
tion among extant vascular plants necessitated delayed zygotic 
meiosis and a transfer of function of the degradation-resistant 
polymers protecting zygotes to those protecting spores.

The nonvascular to vascular transition

Considerable importance is often attached to the evolution of 
stomata and the cuticle when reviewing how plants adapted 
to life on land (or, more accurately, adapted to life in the air). 
However, extant liverworts lack stomata, while the presence of 
stomata on the sporangia of poikilohydric mosses and horn-
worts may signify that these structures performed different 
functionalities than those observed for extant homeohydric 
taxa: for example, stomata may have functioned to promote 
tissue dehydration for spore release as Sphagnum pseudos-
tomata do today (Duckett et  al., 2005) Likewise, although 
the function of the cuticle is typically discussed in terms of 
water conservation and UV protection, tensile mechanical 
tests show that the cuticle is also remarkably strong and opti-
mally placed to cope with the hydrostatic stresses generated 
by turgid ground tissues (Matas et al., 2004). The cuticle is 
also important during early development because it prevents 
the fusion of the neighbouring cell walls of closely packed 
organs. The evolution of a contiguous cuticle may have driven 
the evolution of water-conducting tissues as a result of pre-
cluding ecotohydric water transport and absorption.

Whether the first hydraulic tissues transported water apo-
plastically like xylem or symplastically like phloem remains 
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Fig. 1.  Log10-transformed data for cell surface area plotted 
against transformed data for cell volume (original units in µm). The 
solid line is a reduced major axis regression curve with a slope of 
0.76. Data from Niklas (1994).
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conjectural as well, since the function of  such a delicate tis-
sue would not be easily deduced from fossils. However, it 
is noteworthy that phloem, and not xylem, is the principal 
venue for water transport in developing leaves and trans-
ports significant quantities of  water as a result of  phloem 
loading in mature organs (Ayer et al., 2003; Turgeon, 2006) 

(Fig. 2A). It is conceivable, therefore, that the first special-
ized tissues for transport in the earliest land plants conveyed 
water and photosynthates symplastically (Fig. 2B), just as 
it is possible that the phloem-like leptom of  some extant 
mosses transports water as an indirect consequence of  the 
basipetal transport of  photosynthates in the xylem-like 
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Fig. 2.  Diagram of phloem loading in an extant angiosperm, for example in Salix (A), a hypothetical symplastic water transport system 
driven by external water sources and a solute concentration gradient (B), and a hypothetical hadrom-leptom system with a phloem-like 
loading component (C). Solutes denoted by black dots; concentrations gradients indicated by numbers of black dots.
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hadrom (Fig. 2C). If  so, a plausible scenario is that, because 
of  their small size, the most ancient land plants could rely 
on passive diffusion for the acropetal symplastic transport 
of  water using basipetally decreasing solute concentrations 
in a leptom. Plant stature could have increased with the evo-
lution of  a xylem-like hadrom tissue capable of  apoplasti-
cally transporting water (supplied in part by the ectohydric 
wicking of  water) driven by a simple hadrom solute-loading 
system. The transition from this condition to a true vas-
cular system with xylem and phloem loading required the 
evolution of  cell-wall patterning and differential thickening 
(Oda and Fukuda, 2012) and programmed cell death, both 
of  which are prefigured in nonvascular plants. The differen-
tial thickening and lignification of  xylem cells empowered 
tracheids and vessel members to resist implosion by virtue 
of  the mechanical reinforcement of  cell walls and by virtue 
of  lignin’s hydrophobic ability to prevent the hydration of 
cellulose, which is weaker when wet than when dry (Schuetz 
et al., 2012).

Another important component to understanding the evo-
lution of the earliest vascular plants is the hydraulic conse-
quences of altering the morphology of the stele from a simple 
centrally located haplostele to steles in which xylem is located 
closer to the stem periphery (e.g. actinosteles and siphonost-
eles). The work of Roth and Mosbrugger indicates that the 
optimization of water transport depends on the location of 
conducting cells as well as on cell number (Roth et al., 1994; 
Roth and Mosbrugger, 1996). Their work also shows that 
protosteles contribute little or nothing to mechanical stability 
because they occupy a mechanical ‘safe site’ in which bend-
ing and twisting stresses have negligible magnitudes, whereas 
actinosteles and siphonosteles progressively contribute to 
mechanical stability by deploying comparatively stiff  cells in 
locations that experience larger stresses.

Finally, it should be noted that the ability to sense gravity 
is required regardless of whether a plant lives in water or on 
land and that this ability involves compressive forces exerted 
on cell membranes, which stimulates the reorientation of cells 
or organs (Moulia and Fournier, 2009; Blancaflor, 2013). For 
example, when a root is placed askew, amyloplast resedimen-
tation and subsequent cytoplasmic alkalinization in the cells 
of the columella are rapidly followed by the relocalization of 
auxin efflux carriers that changes the flow of auxin through 
the root and generates a lateral auxin gradient across the root 
cap. The extension of this gradient to cells in the elongation 
zone results in ‘top-to-bottom’ differential cell elongation, 
which subsequently reorients the root (Baldwin et al., 2013).

The primary to secondary growth transition

The evolution of tall plants need not have been limited by 
the mechanical properties of primary tissues, since some can 
be as stiff  as wood. Bending tests indicate that the hypoder-
mal tissue of the giant moss Dendrolignotrichum dendroides 
has an average Young’s modulus of 4.55 GPa (Frenzke et al., 
2011), which exceeds the Young’s modulus reported for the 
sclerenchyma isolated from Aristolochia macrophylla (3.08 

GPa; Köhler et  al., 2000) and is roughly 60% the value of 
the average Young’s modulus reported for green conifer wood 
(7.33 GPa; Niklas and Spatz, 2010). Indeed, the material 
properties of primary tissues can exceed that of some species 
of wood (e.g. the Young’s modulus of coconut palm stems is 
on the order of 30 GPa) (Gibson, 2012).

The evolution of plant height was just as likely constrained 
by two other important factors: limitations on the vertical 
transport of water and limitations on the cross-sectional area 
of stems. The limits on the former are revealed by the well-
known Hagen–Poiseuille equation (Table 1), which shows that 
any increase in the vertical pathway of water flux increases the 
resistance to flow as a result of a negative hydrostatic pressure 
gradient (Zimmermann, 1983; Niklas and Spatz, 2004, 2012; 
Niklas, 2007; Woodruff and Meinzer, 2011). The solution to 
this limitation is to increase either the radii or the numbers 
of water-conducting cells. Inspection of the fossil record dur-
ing the early phase of vascular plant evolution reveals that 
both of these hydraulic ‘stratagems’ were employed and that 
plant height increased accordingly (Fig.  3). The limitation 
placed on stem height by cross-sectional area is revealed by 
the equally well-known Greenhill–Euler formula for critical 
buckling height (McMahon, 1976), which shows that, for 
any construction material or combination of materials (i.e.  
E/ρg = constant), height increases as the 1/3 power of stem 
area (Table  1). An alternative solution is to employ stiffer 
materials (i.e. increase E), which can dramatically increase 
height with respect to stem radius (Fig. 4). Another solution 
is to deploy the stiffest materials at or near the perimeter, 
which experiences the maximum stresses: an insight into the 
evolution of plant anatomy (Speck and Vogellehner, 1988, 
1994; Speck, 1994; Speck and Rowe, 2003).

In light of the Hagen–Poiseuille and the Greenhill–Euler 
equations, perhaps one of the most ‘elegant’ events in plant 
evolution was the evolution of lateral cambia (the phellogen 
and convergent forms of a vascular cambium documented 
in the fossil record), which simultaneously increase the num-
ber of water-conducting cells and the cross-sectional area of 
stems and roots: excellent reviews of the hydraulic and struc-
tural advantages of a bifacial vascular cambium are provided 
by Rowe and Speck (2004), Woodruff and Meinzer (2011), 
and Carlquist (2012); the mechanical contributions of the 
outer bark (phellem) are discussed by Xu et  al. (1997) and 
Niklas (1999a). Importantly, this ‘event’ occurred in very dif-
ferent plant lineages, for example the lycopods, horsetails, 
progymnosperms, and the seed plants (Mosbrugger, 1990). 
For three of these lineages, the capacity to form secondary 
xylem may have been prefigured by the ability to form wound 
tissue, since trimerophytes (which are believed to be the last 
common ancestors to the arborescent horsetails, progymno-
sperms, and seed plants) had the ability to produce localized 
periderm in response to damage induced by fungi or animals 
(Banks and Colthart, 1993).

Regardless of  the anatomical or geometrical innovations 
that resulted in taller plants, gaining height imposed a con-
siderable physical constraint: that is, the effects of  wind-
induced drag (Vogel, 1994; Ennos, 1997; Anten and Sterck, 
2012) and the dynamical harmonics that can ensue among 
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branches (James et al., 2006; Spatz et al., 2007; de Langre, 
2012). Inspection of  the pertinent formula (Table 1) reveals 
that a reduction in projected area reduces drag forces lin-
early. For many aquatic plants, this is accomplished by 
means of  highly flexible tissues (Koehl, 1979; Harder et al., 
2006). For terrestrial plants with more rigid tissues, drag 
can be reduced by the downwind flexure of  stems and the 
curling of  leaf  laminae that can also reduce the drag coeffi-
cient, which further reduces drag forces (Vogel, 1989). These 
phenomena reflect the fact that the shear modulus of  most 
plant tissues is significantly lower than the elastic modulus 
(Niklas, 1992). An alternative and more dramatic solution 
is to shed redundant organs. Analyses of  the working and 
breaking stresses within the canopies of  large trees indicate 
that terminal twigs have small factors of  safety compared 
to older branches and are thus the most likely portions 
of  canopies to break under high wind speeds (Niklas and 
Spatz, 2000). The fossil record indicates that the factors of 
safety calculated for arborescent lycopods and other tree 
species changed as a function of  plant height, the degree 
of  branching, and leaf  size and shape (Niklas and Speck, 
2001).

Finally, the evolution of thigmomorphogenesis was essen-
tial for survival both in water and on land, since it permits 
plants to adaptively modify the material properties of tis-
sues as well as the morphology of organs in response to the 
magnitudes and directions of externally applied mechanical 
forces (Koehl, 1979; Telewski, 2006; Moulia et  al., 2011). 
Since wind-induced drag forces exert bending moments at the 
base of plants that require equal counter moments to main-
tain mechanical stability (Ennos, 1993, 2000), the evolution 
of thigmomorphogenetic responses was necessary for root 
systems capable of adjusting to the locations and magnitudes 
of mechanical strains and stresses (Fig. 5).

Concluding remarks and future directions

The use of physical laws to understand the evolutionary tran-
sitions discussed in this review shows that plants perform 
numerous tasks simultaneously and that the performance of 
these tasks involves tradeoffs that can confine the domain 
of phenotypic expression because of the necessity for trait 
covariation. However, the physical laws influencing evolu-
tionary transitions also reveal that tradeoffs necessitate (and 
thus potentially drive) subcellular, cellular, or organographic 
modifications that can expand or even create new domains of 
phenotypic expression. Indeed, each of the four evolutionary 
transitions is prefigured in one or more ways by the ancestral 
functional traits of the previous plant grade or clade. This 
aspect of evolution is evident empirically: variation among 
critical plant functional traits can exceed one order of magni-
tude for species occupying the same site (e.g. Westoby et al., 
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ranges for each of the five plant groups) (B), and maximum stem 
diameter (C). Data from Niklas (1985).
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2002; Westoby and Wright, 2003). It is also revealed theo-
retically with the aid of computer simulations, which show 
that the number of functionally equivalent plant phenotypes 

increases as the number of functional tasks performed 
increases (Niklas, 1994b) and that a large number of possible 
trait combinations can confer equivalent fitness (Marks and 
Lechowicz, 2006).

Among the other lessons that can be drawn from consider-
ing the effects of physical laws and process on plant evolution 
is that phenotypes reflect biophysical compromises. Evolution 
can optimize but not maximize the performance of each of 
the functional obligations required for growth, survival, and 
reproductive success. Under some circumstances, a particular 
set of functional traits might become the object of intense 
natural selection, such as the suite of traits (e.g. cuticular 
thickness and composition, leaf size and shape, and vascular 
anatomy) permitting a plant to survive under xerophytic or 
hydrophytic conditions. However, over a lineage’s long his-
tory, the focus of natural selection will likely shift many times 
such that phyletic inertia carries ancestral traits that may not 
be well equipped to deal with current conditions but may be 
useful at some future time.

These and other lessons can help to direct as well as inform 
future lines of research. Successful evolutionary experiments 
documented in the fossil record, particularly those that were 
convergent among different plant lineages, may highlight new 
biomimetic prospects. For example, the proportionalities of 
tubular leaves and septate stems may provide insights into 
the construction of light-weight yet optimally strong struc-
tures, and the chemical composition of degradation-resistant 
charophycean cell-wall polymers might assist in the identifi-
cation of synthetic compounds that resist chemical erosion. 
These speculations may seem farfetched until one considers 
the commercial success of self-cleaning films patterned after 
the Lotus effect (Barthlott and Neinhuis, 1997) or the many 
engineered cellular materials patterned after plant cellular 
structures (Gibson et al., 2010).﻿﻿﻿﻿‍
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