STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI COURSE PLAN June - November 2024

Department : Physics

Name/s of the Faculty : Ms. Panimaya Peshija. A

Course Title : Astrophysics Course Code : 23PH/PE/AP15

Shift II

COURSE OUTCOMES (COs)

COs	Description				
CO1	Recall and relate the violent Universe (white dwarfs,neutron stars, black holes etc.) beyond our planet and to describe the measurements of space and time.	K1			
CO2	Explain the origin of our universe and apply basic physical principles from the wide range of topics in physics to astronomical situations.	K2			
СОЗ	Demonstrate the relation between the temperature of a stellar core to its strength, colour and chemical composition and to manipulate them algebraically	К3			
CO4	Categorize the importance of stellar magnetic fields, stellar populations, their classification and also to visualize the position of solar system, galactic objects in scale models.	K4			
CO5	Critically analyse the astronomical/physical concepts which enable them to interpret quantitative observations of celestial objects.	K5			

Week	Unit No.	Content	Cognitive Level	Teaching Hours	COs	Teaching Learning Methodology	Assessment Methods
Jun 24 – 26, 2024 (Day Order 4 - 6)	I	General Astronomy System of Coordinates - Altazimuth, Equatorial (local and Universal), Ecliptic and Galactic systems	K1-K5	3	CO1- CO5	Lecture, blackboard, Charts	Discussion and questioning
Jun 27 – July 4, 2024 (Day Order 1 - 6)	I	Conversion of co-ordinates. Time scale - Magnitude scale and magnitude systems - correction for observed magnitudes. The proper motion - stellar parallax - Trignometric, cluster and secular parallaxes.	K1-K5	5	CO1- CO5	Lecture, PPT	Discussion and questioning
July 5 – 12, 2024 (Day Order 1 - 6)	I,II	Method of Luminosity distance Stellar temperatures and sizes Colour and effective temperatures - defining stellar temperatures by matter laws - HR diagram	K1-K5	1 4	CO1- CO5	Lecture, PPT	Discussion and questioning

July 15 – 23, 2024 (Day Order 1 - 6)	П	Spectral and luminosity classification of stars Measurement of stellar radii - Relation of luminosity with mass, radii and surface temperature	K1-K5	5	CO1- CO5	Lecture, Blackboard	Discussion and questioning
July 24 – 31, 2024 (Day Order 1 - 6)	П	Binary stars – visual, spectroscopic and eclipsing binaries.	K1-K5	3	CO1- CO5	Lecture, PPT	Test-K2
Aug 1 – 5, 2024 (Day Order 1 - 3)	III	Stellar structure Equations of stellar structure - Russel - Vogt theorem	K1-K5	3	CO1- CO5	Lecture, Blackboard	Discussion and questioning
Aug 6 – 10, 2024			C.	A. Test - I			
Aug 12 – 14, 2024 (Day Order 4-6)	III	Ideas of polytropic model - stellar opacity - Free - Free transitions, Bound - Free transitions and electron scattering	K1-K5	2	CO1- CO5	Lecture, Blackboard	Discussion and questioning
Aug 16 – 23, 2024 (Day Order 1-6)	III	Eddington's standard model - Homologous model for main sequence stars	K1-K5	5	CO1- CO5	Lecture, Blackboard	Discussion and questioning
Aug 27 – Sep 3, 2024 (Day Order 1-6)	III	Schwarzchild's model for real stars	K1-K5	5	CO1- CO5	Lecture, Blackboard	Discussion and questioning

Sep 4 – 11, 2024 (Day Order 1-6)	IV	Stellar evolution The virial theorem - application to an isothermal gas sphere evolution of stars near the main sequence	K1-K5	5	CO1- CO5	Lecture, Blackboard	Problem test- K5
Sep 12 - 20, 2024 (Day Order 1-6)	IV	effect of hydrogen depletion - Schoenberg - Chandrasekhar limit of an isothermal core - nuclear time scale -	K1-K5	5	CO1- CO5	Lecture, Blackboard	Quiz-K4
Sep 23 - 26, 2024 (Day Order 1-4)	IV	ages of clusters- Star formation - Jean's criterion.	K1-K5	1	CO1- CO5	Lecture, PPT	Discussion and questioning
Sep 27 – Oct 3, 2024	C.A. Test - II						
Oct 4 – 5, 2024 (Day 5 & 6)	V	Stellar energy sources Thermonuclear fusion -	K1-K5	2	CO1- CO5	Lecture, Demonstration video	Discussion and questioning
Oct 7 - 15, 2024 (Day Order 1 to 6)	V	CN cycle - pp chain - simple formulae for the energy generation rates	K1-K5	5	CO1- CO5	Lecture, Blackboard, PPT	Seminar-K5
Oct 16 - 22, 2024 (Day Order 1 to 6)	V	abundances for the elements in the stars structure of the sun from helioseismology - problems of nucleosynthesis.	K1-K5	5	CO1- CO5	Lecture, Blackboard	Discussion and questioning

Oct 23 - 24, 2024	REVISION
(Day Order 1 to 2)	