STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI COURSE PLAN June - November 2024

Department : PHYSICS

Name/s of the Faculty : SR. JOSEPHINE DIANA

Course Title : PHYSICS FOR MATHEMATICS - I

Course Code : 23PH/AC/PM13

Shift : I

COURSE OUTCOMES (COs)

COs	Description						
CO1	Acquire knowledge on elasticity, bending of beams and theories of surface tension and viscosity of liquids, mechanics, and the basic concepts of relativity.	K1					
CO2	Describe the elastic behaviour of solids, the physical properties of liquids that impact fluid motion, and explain the concepts of mechanics and relativity.	K2					
CO3	Apply the mathematical tools to solve simple and complex problems in physics	К3					
CO4	Examine the behaviour of rigid bodies and liquids utilizing theoretical concepts.	K4					
CO5	Formulate the knowledge gained in theory for real life and practical applications.	K5					

Week	Unit No.	Content	Cognitive Level	Teaching Hours	COs	Teaching Learning Methodology	Assessment Methods
Jun 24 – 26, 2024 (Day Order 4 - 6)	1	Introduction to Mechanics	K1	1	1	Lecture,	
Jun 27 – July 4, 2024 (Day Order 1 - 6)	1	Mechanics I 1.1 Impulse-Impact- Conservation of linear momentum: Internal forces and momentum conservation – center of mass- examples	K1-K5	2	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration	Questioning on the classes taught
July 5 – 12, 2024 (Day Order 1 - 6)	1	General elastic collision of particles of different masses. 1.2 Significance of conservation laws- law of conservation of Energy-concepts of work- power – energy – potential energy.	K1-K5	3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, Problem solving	
July 15 – 23, 2024 (Day Order 1 - 6)	2	Mechanics II 2.1 Simple Harmonic Motion: Periodic and Harmonic Motion- Formula for acceleration, velocity and displacement - Energy of a Harmonic Oscillator	K1-K5	3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	Questioning on the classes taught

July 24 – 31, 2024 (Day Order 1 - 6)	2	oscillation in spring mass- springs in series and parallel. 2.2 Classical mechanics: Degrees of freedom and constraints Generalized Coordinates		3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	Component Test- K3, K4 Assessment
Aug 1 – 5, 2024 (Day Order 1 - 3)	2	principle of virtual work - De Alembert's principle - Explanation of Lagrangian equation (No derivation) Application of Lagrangian equation in Atwood's machine and Simple pendulum.		2	CO1- CO5	Lecture, Powerpoint Presentation, problem solving	
Aug 6 – 10, 2024							
Aug 12 – 14, 2024 (Day Order 4-6)	3	Elasticity 3.1 Elastic properties: Hooke's law - Elastic limit moduli of Elasticity Poisson's ratio 3.2 Expression for Bending Moment -	K1-K5	2	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	quiz
Aug 16 – 23, 2024 (Day Order 1-6)	3	Depression at the loaded end of the cantilever – depression and elevation at the midpoint of a loaded beam (non- uniform and uniform bending)	K1-K5	3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	

Aug 27 – Sep 3, 2024 (Day Order 1-6)	3	Torsion in a wire – Torque per unit twist – torsional oscillations – Expression for period Viscosity and Surface Tension 4.1 Coefficient of viscosity	K1-K5	3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	Assignment- K6 assessment
Sep 4 – 11, 2024 (Day Order 1-6)	4	Stream Line Flow and Turbulent Flow Velocity – Euler's Equation for unidirectional flow	K1-K5	3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	
Sep 12 - 20, 2024 (Day Order 1-6)	4	4.2 Surface Tension: molecular theory of surface tension Determination of Surface Tension by Drop Weight Method- Interfacial Surface Tension	K1-K5	3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	Problem Test – K 5 assessment
Sep 23 - 26, 2024 (Day Order 1-4)	5	Relativity 5.1 Inertial Frames of Reference- Newtonian Relativity – Galilean Transformation Equations	K1-K5	2	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration Video, problem solving	
Sep 27 – Oct 3, 2024	C.A. Test - II						
Oct 4 – 5, 2024 (Day 5 & 6)	5	5.1 Postulates of Special Theory of Relativity-	K1-K5	1	CO1- CO5	Lecture, Powerpoint presentation	

Oct 7 - 15, 2024 (Day Order 1 to 6)	5	5.1 Lorentz Transformation Equations- Length Contraction Time Dilation - Twin Paradox and Meson Paradox	K1-K5	3	CO1- CO5	Lecture, Powerpoint Presentation, Demonstration, problem solving	Short test
Oct 16 - 22, 2024 (Day Order 1 to 6)	5	5.3 Relativistic Momentum (no derivation) – Mass Energy Relation- Physical Significance.	K1-K5	3	CO1- CO5	Lecture and Powerpoint presentation, problem solving	
Oct 23 - 24, 2024 (Day Order 1 to 2)				RF	EVISION		