	STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI COURSE PLAN June - November 2024			
Department Name/s of the Facul Course Title Course Code Shift	: Mathematics			
	COURSE OUTCOMES (COs)			
COs	COs Description			
CO1	Recall the various applied mathematical concepts such as matrices, vector analysis, numerical methods and linear programming problems	K1		
CO2	Understand the fundamentals relevant to the methods utilized in solving problems related to equations, numerical integration and vector differentiation	K2		
CO3	Apply appropriate mathematical techniques in solving related problems and model real time situations	К3		
CO4	Analyse the different methodology adapted to solve a particular problem	K4		
CO5	Evaluate and make inference from the solutions obtained for related problems	K5		

Week	Uni t No.	Content	Cognitiv e Level	Teaching Hours	COs	Teaching Learning Methodology	Assessment Methods
Jun 19 – 26, 2024 (Day Order 1 - 6)	3	 Solution of Transcendental and Algebraic Equations 3.1 The Bisection Method Matrices 1.1 Eigen Values and Eigen Vectors of Square Matrices 3 	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Assignments
Jun 27 – July 4, 2024 (Day Order 1 - 6)	3	 Solution of Transcendental and Algebraic Equations 3.1 The Bisection Method 3.2 Newton-Raphson Method Matrices 1.2 Cayley – Hamilton Theorem 	K1-K5	2	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Quiz
July 5 – 12, 2024 (Day Order 1 - 6)	3	Solution of Transcendental and Algebraic Equations 3.2 Newton-Raphson Method Matrices 1.3 Diagonalization of Matrices	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Problem Solving
July 15 – 23, 2024 (Day Order 1 - 6)	3 1 2	 Solution of Transcendental and Algebraic Equations 3.3 Gauss Elimination Method Matrices 1.3 Diagonalization of Matrices Vector Analysis 2.1 Scalar and Vector Point Functions 	K1-K5	2 2 1	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Questioning
July 24 – 31, 2024 (Day Order 1 - 6)	3 2	Solution of Transcendental and Algebraic Equations 3.3 Gauss Elimination Method Vector Analysis 2.2 Gradient	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Problem Solving

Aug 1 – 5, 2024 (Day Order 1 - 3)	3 2	Solution of Transcendental and Algebraic Equations (Contd.) 3.4 Gauss Jordan Elimination Method Vector Analysis 2.3 Divergence and Curl	K1-K5	1 2	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Quiz
Aug 6 – 10, 2024		C.A. Test – I (Unit 1(fully) an	d Unit 3 (3.1 – 3.3))			
Aug 12 – 14, 2024 (Day Order 4-6)	3	Solution of Transcendental and AlgebraicEquations (Contd.)3.4 Gauss Jordan Elimination MethodVector Analysis2.4 Solenoidal and Irrotational Vectors	K1-K5	1	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Problem solving
Aug 16 – 23, 2024 (Day Order 1-6)	3 2	Solution of Transcendental and AlgebraicEquations (Contd.)3.4 Gauss Jordan Elimination MethodVector Analysis2.5 Problems using Vector Identities	K1-K5	2 3	CO1-5	Lecture, Group Discussion and Presentations Learning by Doing Problems	Assignments
Aug 27 – Sep 3, 2024 (Day Order 1-6)	4 2	Numerical Differentiation and Integration4.1 Derivatives using Newton's Forward DifferenceFormulaVector Analysis2.5 Problems using Vector Identities	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Presentations
Sep 4 – 11, 2024 (Day Order 1-6)	4	Numerical Differentiation and Integration4.1 Derivatives using Newton's Forward DifferenceFormulaLinear Programming Problem5.1 Linear Programming Formulation	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Problem Assignment [20 marks] (Unit 5 – 5.1, Unit 3 – 3.1, 3.2, 3.3)

Sep 12 - 20, 2024 (Day Order 1-6)	4 5	Numerical Differentiation and Integration4.2 Derivatives using Newton's Backward DifferenceFormulaLinear Programming Problem5.2 Graphical Method	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Problem Solving
Sep 23 - 26, 2024 (Day Order 1-4)	4 5	Numerical Differentiation and Integration 4.2 Derivatives using Newton's Backward Difference Formula Linear Programming Problem 5.3 General L.P.P	K1-K5	1 2	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Problem Solving
Sep 27 – Oct 3, 2024		C.A. Test –]	II (Units 2	2, 3.4, 4.1)			
Oct 4 – 5, 2024 (Day 5 & 6)	4 5	Numerical Differentiation and Integration4.2 Derivatives using Newton's Backward DifferenceFormulaLinear Programming Problem5.4 Canonical and Standard Forms of L.P.P.	K1-K5	1	CO1-5	Lecture, Group discussion and Presentations Learning by Doing Problems	Quiz
Oct 7 - 15, 2024 (Day Order 1 to 6)	4	Numerical Integration4.3 Trapezoidal RuleLinear Programming Problem5.4 Canonical and Standard Forms of L.P.P.5.5 The Simplex Algorithm	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Third Component Test [20 Marks] (Unit 5 : 5.2 – 5.4)
Oct 16 - 22, 2024 (Day Order 1 to 6)	4 5	Numerical Integration4.3 Trapezoidal RuleLinear Programming Problem5.5 The Simplex Algorithm	K1-K5	2 3	CO1-5	Lecture and Group Discussion Learning by Doing Problems	Third Component Test [10 marks] (Unit 4 – 4.2, 4.3)

Oct 23 - 24, 2024	REVISION
(Day Order 1 to 2)	