STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12)

SUBJECT CODE : 11PH/MC/MP34 B.Sc. DEGREE EXAMINATION NOVEMBER 2012 BRANCH III - PHYSICS THIRD SEMESTER BEG. No

	REG. No				
COUI	RSE : MAJOR – CORE				
PAPE	R : MATHEMATICAL PHYSICS				
TIME					
	SECTION – A				
TO BE ANSWERED IN THE QUESTION PAPER ITSELF					
ANGV	VER ALL QUESTIONS: (30x1=30)				
I CHOOSE THE CORRECT ANSWER:					
_					
1.	kXi =				
	a) iXk b) k c) i d) $-iXk$				
2	1				
2.					
	a) ab b) $ab\sin\theta$ c) $ab\cos\theta$ d) $ab\sin\theta\hat{n}$				
3.	$curl \ grad \ \varphi =$				
	a) 0 b) ∞ c) 1 d) -1				
4.	Integral of a point function along a curve is called				
	a) surface integral b) line integral c) volume integral				
5.	div J =				
	a) $\frac{d\rho}{dt}$ b) $\frac{dP}{dt}$ c) $\frac{-d\rho}{dt}$ d) $\frac{-dP}{dt}$				
	at at at at				
6.	Two vectors are collinear if and only if $aXb =$				
0.	a) ∞ b) 1 c) $\frac{\pi}{2}$ d) 0				
	2				
7.	The differential equation whose solution is $y = a \cos(x + 3)$ is $\frac{dy}{dx} =$				
	a) $y \tan(x+3)$ b) $y \sec(x+3)$ c) $-y \tan(x+3)$ d) $-y \sec(x+3)$				
8.	A coil of resistance 15Ω and inductance 10H is connected to a 10V supply. The value of				
	current after 2 secs is $(e^{-3} = 0.05)$				
	a) 6A b) 5A c) 4A d) 7A				
9.					
	a) v/c b) c/v c) q/v d) q/c				
10.	The auxiliary equation for $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Q = 0$ is				
10.					
a) $m^2 + Pm + Q = 0$ b) $\frac{1}{m^2} + \frac{P}{m} + Q = 0$ c) $(P_m + Q)^2$ d) $m(P + Q)^2$					

..2..

$$\frac{2}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = 0 \text{ is } y = \frac{112}{4x^2} + \mu^2 y = \frac{112}{4x^2} + \frac{12}{4x^2} + \frac{12$$

- 21. i.i = 1.
- 22. $Curl A = \nabla A$
- 23. The rate at which ice melts is proportional to the amount of ice at that instant.
- 24. Complete solution = Complementary function + Particular integral.
- 25. $\Gamma_1 = 1$

IV.ANSWER THE FOLLOWING:

26. What is the expression for the moment of a force.

- 27. Give the statement for Stoke's theorem.
- 28. State any one application for first order differential equation.
- 29. A = 2i + 3j + 4k and B = 3i 4j + k find A.B.

30. $\Gamma \frac{1}{2} =$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2011-12)

SUBJECT CODE : 11PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2012 BRANCH III - PHYSICS THIRD SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	MATHEMATICAL PHYSICS	
TIME	:	2 ¹ / ₂ HOURS	MAX. MARKS: 70
		SECTION – B	

ANSWER ANY FIVE QUESTIONS:

- If for two vectors \vec{a} and \vec{b} , $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$. Find the angles between \vec{a} and \vec{b} . 1.
- A fluid motion is given by $\vec{v} = (y \sin z \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k$. 2. Is the motion rotational or irrotational?
- Uranium disintegrates at a rate proportional to the amount present at any instant. If m_1 3. and m_2 grams of uranium are present at time t_1 and t_2 respectively. Show that half life of uranium is $\frac{(t_1-t_2)\log^2}{m_1}$.

State
$$d^2y = 0 dy + 1 Ey =$$

- State $\frac{d^2y}{dx^2} 8\frac{dy}{dx} + 15y = 0$ State and prove Green's theorem. 4.
- 5.
- Evaluate $\int_0^\infty \sqrt[4]{x} e^{-\sqrt{x}} dx$. 6.

7. Show that
$$\Gamma_n \quad \Gamma_{1-n} = \frac{\pi}{\sin n\pi}$$
 (0

SECTION – C

ANSWER ANY THREE QUESTIONS:

If r is the distance of a point (x, y, z) from the origin prove that 8.

$$\operatorname{curl}\left(k \, X \, \operatorname{grad} \frac{1}{r}\right) + \operatorname{grad}\left(k \, \operatorname{grad} \frac{1}{r}\right) = 0$$

Where k is the unit vector in the direction 0Z.

- 9. State and prove divergence theorem of Gauss.
- 10. A body falling vertically under gravity encounters resistance of the atmosphere. If the resistance varies as the velocity show that $\frac{du}{dt} = g - ku$ where u is the velocity, k is a constant and g is acceleration due to gravity. Show that as t, increase u approaches the value $\frac{g}{k}$. Also if $u = \frac{dx}{dt}$ where x is the distance fallen by the body from rest in time t, show that $x = \frac{gt}{k} - \frac{g}{k^2}(1 - e^{-kt}).$
- Find expressions for current in a series circuit containing 11.
 - i) L and R
 - ii) L, C and R

Deduce the Rodrigue's formula for legendre polynomial 12.

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

(5x5=25)

(3x15=45)