STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2011-12 \& thereafter)

SUBJECT CODE :11PH/MC/BE14

B.Sc. DEGREE EXAMINATION NOVEMBER 2012
 BRANCH III - PHYSICS
 FIRST SEMESTER
 PAPER : BASIC ELECTRONICS
 30 MINS

COURSE : MAJOR - CORE
TIME
MAX. MARKS : 30
SECTION - A
ANSWER ALL QUESTIONS:
($\mathbf{3 0} \times 1=30$)

I. CHOOSE THE CORRECT ANSWERS:

1. According to Kirchoff's voltage law, the algebraic sum of all IxR drops and emf's in a closed path is
a) positive
b)negative
c)zero d)none of the above
2. In order to obtain maximum power from load terminal the resistance across load terminal should be \qquad to circuit resistance
a) Equal
b) less
c) greater
d) none of the above
3. A 6 ohm and 3 ohm resistance are connected in parallel to 2 V , the current through 3 ohm resistance is
a) $2 / 3$
b) $1 / 3$
c) $4 / 3$
d) $5 / 3$
4. The decimal equivalent of the binary number 10010.1 is
a) 24.5
b) 34.5
c) 34.15
d) 34.05
5. The decimal equivalent of $(46)_{8}$ is
a) 38
b) 28
c) 48
d) 30
6. In Boolean algebra $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$ is
a) $\mathrm{AC}+\mathrm{B}$
b) $(A+B) C$
c) $\mathrm{A}+\mathrm{BC}$
d) $\mathrm{A}(\mathrm{B}+\mathrm{C})$
7. The design of EX-OR gate requires how many NAND gates
a) 2
b) 3
c) 5
d) 4
8. The inputs of a NOR gate are connected together, the resulting circuit is
a) OR gate
b) AND gate
c) NOT gate
d) EX-OR gate
9. The output of full adder is
a) Difference and borrow
b) borrow only
c) carry only
d) sum and carry
10. Mod-15 counter requires
a) 4flip flops
b) 3 flip flops
c) 5 flip flops
d) 2 flip flops
11. Ripple counter is also called as
a) Asynchronous counter
b) synchronous counter
c) ring counter
d) Johnson counter
12. MSI contains
a) 10 gates/chip
b) 10-100 gates /chip
c) 100-1000 gates/chip
d) more than 1000 gates/chip
13. Toggle state in J-k flip flop is
a) $\mathrm{J}=1, \mathrm{~K}=1$
b) $\mathrm{J}=1, \mathrm{~K}=0$
c) $\mathrm{J}=0, \mathrm{~K}=1$
d) $\mathrm{J}=0, \mathrm{~K}=0$
14. An audio amplifier is an example of
a) Digital IC
b) linear IC
c) both digital and linear IC
d) none of the above
15. ICs are used in
a) linear device
b) digital device
c) both $\mathrm{a} \& \mathrm{~b}$
d) none of the above

II. FILL IN THE BLANKS

16. The efficiency at maximum power transfer is \qquad
17. In Boolean algebra $\mathrm{A}+\overline{\mathrm{A}}=$ \qquad
18. Standard product or fundamental product is called as \qquad
19. Race round problem occurs in \qquad flip-flop
20. SiO_{2} layer in an IC acts as \qquad
III. TRUE OR FALSE.
21. An ideal voltage source has zero resistance
22. In hexadecimal addition $\mathrm{C}_{\mathrm{H}}+\mathrm{D}_{\mathrm{H}}=9_{\mathrm{H}}$
23. In a NOT gate if the bubble is removed the gate is called a buffer
24. The forbidden state present in S-R flip flop is not defined in a J-K flip-flop
25. Digital ICs process digital signals only
IV. ANSWER BRIEFLY
26. What is constant current source?
27. Draw half adder logic circuit.
28. What is octet in K-map?
29. What is a register?
30. What is a monolithic IC?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2011-12 \& thereafter)

SUBJECT CODE :11PH/MC/BE14

B.Sc. DEGREE EXAMINATION NOVEMBER 2012
 BRANCH III - PHYSICS
 FIRST SEMESTER
 PAPER : BASIC ELECTRONICS
 MAX. MARKS : 70

COURSE : MAJOR - CORE
TIME : $2^{11 / 2}$ HOURS
SECTION - B
ANSWER ANY FIVE QUESTIONS: ($5 \times 5=25$)

1. State and explain maximum power transfer theorem.
2. Convert $(68)_{10}$ to hexadecimal, octal and binary numbers.
3. Reduce the Boolean expression to five literals and draw a logic circuit $Y=A B C+A \vec{B} C+A B \vec{C}+\vec{A} \vec{B} \vec{C}+\vec{A} \vec{B} C$.
4. \quad Simplify using K-map $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathbf{0}, 1,2,5,10,11,14,15$.
5. What are the advantages of ICs?
6. Explain full adder with a logic circuit.
7. Explain clocked S-R flip-flop using NAND gate.

SECTION - C

ANSWER ANY THREE QUESTIONS:
8. a) State and explain Thevenins Theorem.
b) Show that when Thevenins circuit is converted to Norton's circuit $\mathrm{I}_{\mathrm{N}}=\mathrm{E}_{0} / \mathrm{R}_{0}$ and $\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{0}$ are Thevenins voltage and resistance respectively.
9. Explain NAND and NOR as universal building blocks.
10. Explain two variable, three variable and four variable K-maps with example.
11. Explain the working of decade counter and right -shift register.
12. Explain how resistor, capacitor and transistor can be constructed in a monolithic IC.

