STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE :11PH/MC/BE14

B.Sc. DEGREE EXAMINATION NOVEMBER 2012 BRANCH III - PHYSICS FIRST SEMESTER MAJOR CORE

COURSE	:	MAJOR – CORE		
PAPER	:	BASIC ELECTRONICS		
TIME	:	30 MINS	MAX. MARKS : 30	
		SECTION – A		
		ANSWER ALL QUESTIONS:	$(30 \times 1 = 30)$	
I. CHOOSE THE CORRECT ANSWERS:				

1.	According to Kirchoff's voltage law, the algebraic sum of all IxR drops and emf's in a closed path is			
	a) positive b)negative c)zero d)none	of the above	
2.	In order to obtain maximum power from load terminal the resistance across load terminal should be to circuit resistance			
	a) Equal b) less c)) greater	d) none of the above	
3.	A 6 ohm and 3 ohm resistance are connected in parallel to 2V, the current through 3 ohm resistance is			
	a) 2/3 b) 1/3 c)) 4/3	d) 5/3	
4.	The decimal equivalent of the b	inary number	10010.1 is	
		•	d) 34.05	
5.				
5.	The decimal equivalent of $(46)_8$ a) 38 b) 28 c		d) 30	
		, ,		
6.	In Boolean algebra (A+B)(A+C a) AC+B b) (A+B)C c	,	d) A(B+C)	
		ATDC C	(D+C)	
7.	The design of EX-OR gate requ			
	a) 2 b) 3 c)) 5 (d) 4	
8.	The inputs of a NOR gate are connected together, the resulting circuit is a) OR gate b) AND gate c) NOT gate d) EX-OR gate			
9.	The output of full adder is			
	a) Difference and borrow b)) borrow only	c) carry only d) sum and carry	
10.	Mod-15 counter requires			
	a) 4flip flops b) 3 flip flops c)) Ship hops	d) 2 flip flops	
11.	Ripple counter is also called as a) Asynchronous counter c) ring counter	· •	hronous counter son counter 2	

12.	MSI contains			
	a) 10 gates/chip	b) 10-100 gate	es /chip	
	c)100-1000 gates/chip	d) more than	1000 gates/chip	
13.	Toggle state in J-k flip flop i a) J=1, K=1 b) J=1, K=0		d) J=0, K=0	
14.	An audio amplifier is an exa a) Digital IC b) linear IC	*	and linear IC	d) none of the above
15.	ICs are used in a) linear device b) dig	ital device	c) both a&b	d) none of the above
II.	FILL IN THE BLANKS			

121

1/		CC' '	· ·		· · ·	•
16.	Ine	efficiency	at maximum	nower	trancter	19
10.	THU	criticicile y	at maximum	power	uansier	15

- 17. In Boolean algebra $A+\bar{A}=$
- Standard product or fundamental product is called as_____ 18.
- 19. Race round problem occurs in_____ flip-flop
- 20. SiO₂ layer in an IC acts as_____

Ш. TRUE OR FALSE.

- 21. An ideal voltage source has zero resistance
- 22. In hexadecimal addition $C_H+D_H=9_H$
- 23. In a NOT gate if the bubble is removed the gate is called a buffer
- 24. The forbidden state present in S-R flip flop is not defined in a J-K flip-flop
- Digital ICs process digital signals only 25.

IV. **ANSWER BRIEFLY**

- 26. What is constant current source?
- Draw half adder logic circuit. 27.
- 28. What is octet in K-map?
- 29. What is a register?
- 30. What is a monolithic IC?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE :11PH/MC/BE14

 $(5 \times 5 = 25)$

B.Sc. DEGREE EXAMINATION NOVEMBER 2012 BRANCH III - PHYSICS FIRST SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	BASIC ELECTRONICS	
TIME	:	2 ¹ / ₂ HOURS	MAX. MARKS: 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 1. State and explain maximum power transfer theorem.
- 2. Convert $(68)_{10}$ to hexadecimal, octal and binary numbers.
- 3. Reduce the Boolean expression to five literals and draw a logic circuit $Y = ABC + A\vec{B}C + AB\vec{C} + \vec{A}\vec{B}\vec{C} + \vec{A}\vec{B}C.$
- 4. Simplify using K-map $F(A,B,C,D)=\Sigma 0,1,2,5,10,11,14,15$.
- 5. What are the advantages of ICs?
- 6. Explain full adder with a logic circuit.
- 7. Explain clocked S-R flip-flop using NAND gate.

SECTION – C

ANSWER ANY THREE QUESTIONS: $(3 \times 15 = 45)$

- 8. a) State and explain Thevenins Theorem. b) Show that when Thevenins circuit is converted to Norton's circuit $I_N=E_0/R_0$ and $R_N=R_0$ are Thevenins voltage and resistance respectively.
- 9. Explain NAND and NOR as universal building blocks.
- 10. Explain two variable, three variable and four variable K-maps with example.
- 11. Explain the working of decade counter and right –shift register.
- 12. Explain how resistor, capacitor and transistor can be constructed in a monolithic IC.

$\times \times \times \times \times \times \times$