STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008 – 09 & thereafter)

SUBJECT CODE : MT/MC/SS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2012 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: STATICS	
TIME	: 3 HOURS	MAX. MARKS: 100

ANSWER ANY SIX QUESTIONS:

(6 * 17)

- 1. a) State and prove triangle law of forces.
 - b) The angle between two forces of equal magnitude is θ and the resultant is R. If the angle is decreased by $\pi/2$, then the resultant is $\sqrt{3} R$. Find θ .
- 2. a) State and prove Varignon's theorem.
 - b) A string ABCD hangs from fixed points A,D carrying a weight of 12 kgm at B and a weight of W kgm at C. AB is inclined at an angle 60° to the horizontal; BC is horizontal and CD is inclined at 30° to horizontal. Find W.
- 3. a) Show that any system of coplanar forces is equivalent to a single force acting at a choosen point and a couple.
 - b) Two unlike parallel forces *P* and *Q* (*P* > *Q*) act at *A* and *B*, *P* and *Q* are each increased by *R* show that the resultant will move through a distance $\frac{R}{P-Q}$ *AB*.
- 4. a) Prove that if three forces acting on a rigid body are represented in magnitude and direction by the sides of a triangle taken in order, then they are equivalent to a couple of moment equal to twice the area of the triangle.
 - b) If six forces of relative magnitude 1, 2, 3, 4, 5 and 6 act along the sides of a regular hexagon, taken in order show that the single equivalent force is of relative magnitude 6 and it acts along a line parallel to the direction of force 5 at a distance from the centre of the hexagon 3¹/₂ the distance of the centre from a side.
- 5. a) A uniform ladder of length *l* metres rests on a rough horizontal ground with its upper end projecting very slightly over a smooth horizontal rod at a height *a* metres above the ground. If the ladder is about to slip down, show that the coefficient of friction is equal to ^{a√l²-a²}/_{l²+a²}.
 b) Two rough participation and the state of the st
 - b) Two rough particles connected by a light spring rest on an inclined plane. If their weights are W and W' and their coefficients of friction are μ and μ' , show that the greatest inclination of the plane for equilibrium is $tan^{-1} \left[\frac{\mu W + \mu' W'}{W + W'} \right]$.

- a) A body of weight W is in equilibrium on a rough inclined plane of angle α(≠ λ) under the action of a force P upwards at an angle θ to the line of the greatest slope, in a vertical plane through the line of the greatest slope. Find P if equilibrium is limiting, where λ is the angle of friction.
 - b) A solid hemisphere of weight *W* rests in limiting equilibrium with its curved surface on rough inclined plane, its place face being kept horizontal by a weight *P* attached to a point in its line. Prove that the coefficient of friction is $\mu = \frac{P}{W(2P+W)}$.
- 7. a) Find the center of gravity of a solid hemisphere.
 - b) A piece of wire of given length *l* is bent into the form of a circular quadrant and its bounding radii. Show that the distance of C.G. of the whole from the centre of the circle is $\frac{6\sqrt{2} l}{(-14)^2}$.

$$(\pi+4)^2$$

8. a) Derive the equation of Catenary in the form $s = c \tan \psi$.

b) A telegraph were stretched between two poles distant a feet apart, sags *n* feet in the middle. Prove that the terminal tension is approximately $W\left[\frac{a^2}{8n} + \frac{7n}{6}\right]$, where *W* is the weight per unit length of the wire.
