STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2008-09\& thereafter)

SUBJECT CODE : MT/MC/SS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2012
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	: MAJOR - CORE
PAPER	: STATICS
TIME	$:$
	3 HOURS

MAX. MARKS : 100

ANSWER ANY SIX QUESTIONS:

1. a) State and prove triangle law of forces.
b) The angle between two forces of equal magnitude is θ and the resultant is R. If the angle is decreased by $\pi / 3$, then the resultant is $\sqrt{3} R$. Find θ.
2. a) State and prove Varignon's theorem.
b) A string $A B C D$ hangs from fixed points A, D carrying a weight of 12 kgm at B and a weight of $W \mathrm{kgm}$ at C . AB is inclined at an angle 60° to the horizontal; BC is horizontal and CD is inclined at 30° to horizontal. Find W.
3. a) Show that any system of coplanar forces is equivalent to a single force acting at a choosen point and a couple.
b) Two unlike parallel forces P and $Q(P>Q)$ act at A and B, P and Q are each increased by R show that the resultant will move through a distance $\frac{R}{P-Q} A B$.
4. a) Prove that if three forces acting on a rigid body are represented in magnitude and direction by the sides of a triangle taken in order, then they are equivalent to a couple of moment equal to twice the area of the triangle.
b) If six forces of relative magnitude $1,2,3,4,5$ and 6 act along the sides of a regular hexagon, taken in order show that the single equivalent force is of relative magnitude 6 and it acts along a line parallel to the direction of force 5 at a distance from the centre of the hexagon $31 / 2$ the distance of the centre from a side.
5. a) A uniform ladder of length l metres rests on a rough horizontal ground with its upper end projecting very slightly over a smooth horizontal rod at a height a metres above the ground. If the ladder is about to slip down, show that the coefficient of friction is equal to $\frac{a \sqrt{l^{2}-a^{2}}}{l^{2}+a^{2}}$.
b) Two rough particles connected by a light spring rest on an inclined plane. If their weights are W and W^{\prime} and their coefficients of friction are μ and μ^{\prime}, show that the greatest inclination of the plane for equilibrium is $\tan ^{-1}\left[\frac{\mu W+\mu^{\prime} W^{\prime}}{W+W^{\prime}}\right]$.
6. a) A body of weight W is in equilibrium on a rough inclined plane of angle $\alpha(\neq \lambda)$ under the action of a force P upwards at an angle θ to the line of the greatest slope, in a vertical plane through the line of the greatest slope. Find P if equilibrium is limiting, where λ is the angle of friction.
b) A solid hemisphere of weight W rests in limiting equilibrium with its curved surface on rough inclined plane, its place face being kept horizontal by a weight P attached to a point in its line. Prove that the coefficient of friction is $\mu=$ $\frac{P}{W(2 P+W)}$.
7. a) Find the center of gravity of a solid hemisphere.
b) A piece of wire of given length l is bent into the form of a circular quadrant and its bounding radii. Show that the distance of C.G. of the whole from the centre of the circle is $\frac{6 \sqrt{2} l}{(\pi+4)^{2}}$.
8. a) Derive the equation of Catenary in the form $s=c \tan \psi$.
b) A telegraph were stretched between two poles distant a feet apart, sags n feet in the middle. Prove that the terminal tension is approximately $W\left[\frac{a^{2}}{8 n}+\frac{7 n}{6}\right]$, where W is the weight per unit length of the wire.
