STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008–09 & thereafter)

SUBJECT CODE : MT/MC/AS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2012 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	: MAJOR – CORE
PAPER	: ALGEBRAIC STRUCTURES
TIME	: 3 HOURS

MAX. MARKS : 100

ANSWER ANY SIX QUESTIONS

- 1. a) Define an equivalence relation with an example.
 - b) Prove that the distinct equivalence classes of an equivalence on a set *A* decomposes *A* as a union of mutually disjoint subsets and conversely.
 - c) If H and K are subgroups of a group G, prove that $H \cap K$ is also a subgroup of G.

(5+7+5)

2. a) If *G* is a finite group whose order is a prime number *p*, then prove that *G* is a cyclic group.

b) If *H* and *K* are finite subgroups of a group *G*, of orders O(H) and O(K) respectively, prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$.

- c) Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$. (4+9+4)
- 3. a) If φ is a homomorphism of G into G, prove that
 - (i) $\varphi(e) = \overline{e}$, the unit element of \overline{G} .

(ii)
$$\varphi(x^{-1}) = [\varphi(x)]^{-1}$$
 for all $x \in G$.

- b) State and prove the fundamental theorem of homomorphism.
- c) If φ is a homomorphism of *G* into \overline{G} with kernel *K*, prove that *K* is a normal subgroup of *G*. (4+8+5)
- 4. a) State and prove Cayley's theorem.
 - b) Define inner automorphism. Prove that $\Im(G) \approx G/Z$ where $\Im(G)$ is the group of inner automorphisms of *G* and *Z* is the center of *G*.
 - c) Obtain the orbits and cycles of the permutation.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$$
(7+6+4)
...2

- /2/
- 5. a) Prove that every finite integral domain is a field.
 - b) If p is a prime number, prove that J_p , the ring of integers mod p is a field.
 - c) If F is a field, prove that its only ideals are $\{0\}$ and F itself.

(7+5+5)

- 6. a) Prove that the intersection of two ideals of a ring R is an ideal of R.
 - b) If *R* is a commutative ring with unit element whose only ideals are (0) and *R* itself, then prove that *R* is a field.
 - c) Prove that the homomorphism φ of *R* into *R'* is an isomorphism if and only if $I(\varphi) = 0$ where $I(\varphi)$ is the kernel of φ .

(3+7+7)

- 7. a) Define a maximal ideal. If *R* is a commutative ring with unit element and *M* is an ideal of *R*, then prove that *M* is a maximal ideal of *R* if and only if R/M is a field.
 - b) Prove that any homomorphism of a field is either an isomorphism or a zero map.
 - c) Prove that every field is a principal ideal domain.

(10+4+3)

- 8. a) Show that every integral domain can be embedded in a field.
 - b) State and prove the division algorithm for polynomials. (12+5)