SUBJECT CODE: 11MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2012
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : MAJOR - CORE
PAPER : VECTOR ANALYSIS AND ITS APPLICATIONS
TIME : 3 HOURS
MAX. MARKS : 100
SECTION-A
Answer All the questions
$(10 \times 2=20)$

1. If $\vec{R}=\sin t \vec{i}+\cos t \vec{j}+t \vec{k}$ then find $\frac{d \vec{R}}{d t}$ and $\frac{d^{2} \vec{R}}{d t^{2}}$.
2. Find the unit tangent vector to any point on the curve $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$
3. Show that the vector $\vec{F}=z \vec{i}+x \vec{j}+y \vec{k}$ is solenoidal.
4. Prove that $\operatorname{curl} \vec{r}=0$ where \vec{r} is the position vector of the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
5. If $\vec{F}=\left(x^{2}-y^{2}+2 x z\right) \vec{i}+(x z-x y+y z) \vec{j}+\left(z^{2}+x^{2}\right) \vec{k}$, find curl \vec{F} at $(1,1,1)$.
6. If $\vec{R}(u)=\left(u-u^{2}\right) \vec{i}+2 u^{3} \vec{j}-3 \vec{k}$, find $\int_{1}^{2} \vec{R}(u) d u$.
7. State Frenet-Serret Formulae.
8. Explain gradient and curl in general curvilinear coordinate system.
9. State Green's theorem in the plane.
10. Show that $\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d s=0$ where S is any closed surface.

SECTION-B

Answer any FIVE questions ($5 \times 8=40$)
11. Find the equation of the tangent plane and normal line to the surface $x y z=4$ at the point $\vec{i}+2 \vec{j}+2 \vec{k}$.
12. If $\phi=x^{3}+y^{3}+z^{3}-3 x y z$, find div $\operatorname{grad} \phi$, curl $\operatorname{grad} \phi$.
13. Prove: $\nabla \times(\vec{u} \times \vec{v})=(\nabla \cdot \vec{v}) \vec{u}-(\nabla \cdot \vec{u}) \vec{v}+(\vec{v} \cdot \nabla) \vec{u}-(\vec{u} \cdot \nabla) \vec{v}$.
14. Find the angle between the surfaces $x^{2}-y^{2}-z^{2}=11$ and $x y+y z-z x=18$ at the point (6, 4, 3).
15. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ when $\vec{F}=\left(x^{2}+y^{2}\right) \vec{i}-2 x y \vec{j}$ and the curve C is the rectangle in the $x y$ - plane bounded by $y=0, x=a, y=b, x=0$.
16. Let $\vec{F}=2 x z \vec{i}-x \vec{j}+y^{2} \vec{k}$. Evaluate $\iiint_{V} \vec{F} d V$ where V is the region bounded by the surface $x=0, y=0, y=6, z=x^{2}, z=4$.
17. Using Green's theorem find $\int_{C} x^{2} y d x+y d y$ where C is the closed curve formed by $y^{2}=x$ and $y=x$.

SECTION-C

Answer any TWO questions $\quad(2 \times 20=40)$
18. a) Show that $\vec{F}=\left(y^{2}+2 x z^{2}\right) \vec{i}+(2 x y-z) \vec{j}+\left(2 x^{2} z-y+2 z\right) \vec{k}$ is irrotational and hence find its scalar potential.
b) Show that $\nabla^{2}\left(r^{n} \vec{r}\right)=n(n+3) r^{n-2} \vec{r}$.
19. a) Evaluate $\int_{C} x d x+y d y$ where C is the ellipse $x^{2}+4 y^{2}=4$.
b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$ when $\vec{F}=18 z \vec{i}-12 \vec{j}+3 y$ as S is the point of the plane $2 x+3 y+6 z=12$ which is in the first octant.
20. a) State and prove Gauss divergence theorem.
b) Verify Stoke's theorem for $\vec{F}=(y-z+2) \vec{i}+(y z+4) \vec{j}-x z \vec{k}$ over the open surfaces of the cube $x=0, y=0, z=0, x=1, y=1, z=1$ not included in the xoy plane.

asalasala

