STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2011–12)

SUBJECT CODE: 11MT/MC/VA34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2012 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : MAJOR – CORE

PAPER : VECTOR ANALYSIS AND ITS APPLICATIONS

TIME : 3 HOURS MAX. MARKS: 100

SECTION-A

Answer All the questions $(10 \times 2 = 20)$

1. If $\vec{R} = \sin t \vec{i} + \cos t \vec{j} + t \vec{k}$ then find $\frac{d\vec{R}}{dt}$ and $\frac{d^2 \vec{R}}{dt^2}$.

- 2. Find the unit tangent vector to any point on the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$
- 3. Show that the vector $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$ is solenoidal.
- 4. Prove that $\operatorname{curl} \vec{r} = 0$ where \vec{r} is the position vector of the point (x,y,z).
- 5. If $\vec{F} = (x^2 y^2 + 2xz)\vec{i} + (xz xy + yz)\vec{j} + (z^2 + x^2)\vec{k}$, find curl \vec{F} at (1, 1, 1).
- 6. If $\vec{R}(u) = (u u^2)\vec{i} + 2u^3\vec{j} 3\vec{k}$, find $\int_{1}^{2} \vec{R}(u)du$.
- 7. State Frenet-Serret Formulae.
- 8. Explain gradient and curl in general curvilinear coordinate system.
- 9. State Green's theorem in the plane.
- 10. Show that $\iint_{S} curl \vec{F} \cdot \hat{n} ds = 0$ where S is any closed surface.

SECTION-B

Answer any FIVE questions
$$(5 \times 8 = 40)$$

- 11. Find the equation of the tangent plane and normal line to the surface xyz = 4 at the point $\vec{i} + 2\vec{j} + 2\vec{k}$.
- 12. If $\phi = x^3 + y^3 + z^3 3xyz$, find div grad ϕ , curl grad ϕ .
- 13. Prove: $\nabla \times (\vec{u} \times \vec{v}) = (\nabla \cdot \vec{v})\vec{u} (\nabla \cdot \vec{u})\vec{v} + (\vec{v} \cdot \nabla)\vec{u} (\vec{u} \cdot \nabla)\vec{v}$.
- 14. Find the angle between the surfaces $x^2 y^2 z^2 = 11$ and xy + yz zx = 18 at the point (6, 4, 3).
- 15. Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ when $\vec{F} = (x^2 + y^2)\vec{i} 2xy\vec{j}$ and the curve C is the rectangle in
- the xy plane bounded by y = 0, x = a, y = b, x = 0. 16. Let $\vec{F} = 2xz\vec{i} - x\vec{j} + y^2\vec{k}$. Evaluate $\iiint_V \vec{F} dV$ where V is the region bounded by the surface x = 0, y = 0, y = 6, $z = x^2$, z = 4.
- 17. Using Green's theorem find $\int_C x^2 y dx + y dy$ where C is the closed curve formed by $y^2 = x$ and y = x.

SECTION-C Answer any TWO questions

 $(2 \times 20 = 40)$

- 18. a) Show that $\vec{F} = (y^2 + 2xz^2)\vec{i} + (2xy z)\vec{j} + (2x^2z y + 2z)\vec{k}$ is irrotational and hence find its scalar potential.
 - b) Show that $\nabla^2(r^n\vec{r}) = n(n+3)r^{n-2}\vec{r}$.
- 19. a) Evaluate $\int_C x dx + y dy$ where C is the ellipse $x^2 + 4y^2 = 4$.
 - b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ when $\vec{F} = 18z\vec{i} 12\vec{j} + 3y$ as S is the point of the plane 2x + 3y + 6z = 12 which is in the first octant.
- 20. a) State and prove Gauss divergence theorem.
 - b) Verify Stoke's theorem for $\vec{F} = (y-z+2)\vec{i} + (yz+4)\vec{j} xz\vec{k}$ over the open surfaces of the cube x = 0, y = 0, z = 0, x = 1, y = 1, z = 1 not included in the xoy plane.

