STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011 – 12)

SUBJECT CODE: 11MT/AC/MT34

B. Com. DEGREE EXAMINATION, NOVEMBER 2012 **COMMERCE** THIRD SEMESTER

COURSE : ALLIED - CORE

: MATHEMATICS FOR COMMERCE **PAPER**

TIME MAX. MARKS: 100 : 3 HOURS

SECTION - A $(10 \times 2 = 20)$ ANSWER ALL THE QUESTIONS

- 1. Prove that the matrix $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is orthogonal.

 2. Find the eigen values of $\begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.
- 3. Form the equation one of whose roots is $\sqrt{5} + \sqrt{3}$.
- 4. If α, β, γ are the roots of the equation $x^3 6x^2 + 11x 6 = 0$, Find the value of $\sum \alpha^2$.
- 5. What is a) Interpolation b) Extrapolation
- 6. State the Newton's backward difference interpolation formula for interpolation.
- 7. Differentiate $\sin^{-1}(\sqrt{x})$.
- 8. If $x = a \sec \theta$ and $y = b \tan \theta$ find $\frac{dy}{dx}$.
- 9. Integrate: $\int e^{\sin^2 x + \cos x} (\sin 2x \sin x) dx.$
- 10. Integrate: $\int \frac{dx}{\sqrt{4-9r^2}}$.

(5 X 8 = 40)**SECTION - B ANSWER ANY FIVE QUESTIONS**

- 11. Show that every square matrix A can be uniquely expressed as a sum of a symmetric matrix and a skew symmetric matrix.
- 12. Find the characteristic roots and characteristic vectors of the matrix $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$
- 13. Solve the equation $x^4 + 2x^3 4x^2 22x + 40 = 0$ given that its roots are in A.P.

14. Use Lagrange's interpolation formula to find the value of y when x = 2 from the table given below.

x	0	1	3	4
у	- 12	0	6	12

15. Apply Gauss forward interpolation formula to estimate f(32) from the following table.

x	25	30	35	40
f(x)	0.2707	0.3027	0.3386	0.3794

16. Find
$$\frac{dy}{dx}$$
 when $x = \frac{2t}{1+t^2}$ and $y = \frac{1-t^2}{1+t^2}$

17. Integrate (i)
$$\int \frac{x^3}{\sqrt{1-x^8}} dx$$
 (ii)
$$\int \sqrt{1+x-2x^2} dx$$

(ii)
$$\int \sqrt{1+x-2x^2} \, dx$$

$$(2 \times 20 = 40)$$

18. (a) Verify Cayley – Hamilton theorem for the matrix
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 and hence find A⁻¹.

(b) Solve the equation
$$4x^4 - 20x^3 + 33x^2 - 20x + 4 = 0$$

(10+10)

- 19. (a) Solve the equation $x^4 4x^3 + 8x + 35 = 0$, given that $2 + i\sqrt{3}$ is a root.
 - (b) Using an appropriate formula for interpolation find the premium payable at 28 years of age for a life insurance policy from the following data. (10+10)

Age in years	25	30	35	40	45	50
Premium in Rs.	230	260	300	350	420	510

20. (a) Differentiate: (i)
$$\log \sec^{-1}(x^4)$$
 (ii) $\sinh^{-1}\left(\frac{3x}{4}\right)$

(ii)
$$\sinh^{-1}\left(\frac{3x}{4}\right)$$

(b) Integrate: (i)
$$\int \frac{e^x}{e^{x/2}-1} dx$$
 (ii) $\int \frac{x+\sin x}{1+\cos x} dx$

(ii)
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
 (10+ 10)

.......