STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/AC/MC14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2012 BRANCH IV - CHEMISTRY FIRST SEMESTER

COURSE : ALLIED - CORE

PAPER : MATHEMATICS FOR CHEMISTRY – I

TIME : 3 HOURS MAX. MARKS : 100

SECTION – A (10 X 2 = 20)ANSWER ALL THE QUESTIONS

- 1. Show that the characteristic equations of a square matrix and its transpose are identical.
- 2. State Cayley Hamilton theorem.
- 3. One of the roots of the equation $3x^5 4x^4 42x^3 + 56x^2 + 27x 36 = 0$ is $\sqrt{2} + \sqrt{5}$. Find the other roots.
- 4. If α, β, γ are the roots of the equation $x^3 + qx + r = 0$ then find $\sum \alpha^2$.
- 5. Differentiate $tan^{-1}(\log x)$ with respect to x.
- 6. Find the n^{th} differential coefficient of $e^x \sin x$.
- 7. Find $\frac{dy}{dx}$ when x and y are connected by the relation $x^2 + y^2 = a^2$.
- 8. Find the partial differential coefficient of $u = \log(x^2 + y^2 + z^2)$.
- 9. Evaluate $\int \tan^2 x \, dx$.
- 10. Evaluate $\int \frac{x^2}{1-x^3} dx$.

11. Verify that the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$ satisfies its characteristic equation and

find A^{-1} .

- 12. Given $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ express $A^5 4A^4 7A^3 + 11A A 10I$ as a polynomial in A and
- 13. Solve the equation $x^4 8x^3 + 7x^2 + 36x 36 = 0$ given that the product of two roots is equal in magnitude but opposite in sign to the product of the other two.

14. If
$$x^y = y^x$$
, prove that $\frac{dy}{dx} = \frac{y(y - x \log y)}{x(x - y \log x)}$.

- 15. a) Find $\frac{du}{dx}$ when $u = xyz, x = e^{-t}, y = e^{-t} \sin^2 t, z = \sin t$.
 - b) Find y_n when $y = \frac{x+1}{(2x-1)(2x+3)}$.
- 16. If $V = f\left(\frac{x}{z}, \frac{y}{z}\right)$ prove that $x\frac{\partial V}{\partial x} + y\frac{\partial V}{\partial y} + z\frac{\partial V}{\partial z} = 0$.
- 17. Prove that $\int_{0}^{\pi/4} \log(1 + \tan \theta) d\theta = \frac{\pi}{8} \log 2.$

18. Diagonalise
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
.

- 19. a) Solve the equation $x^4 + 2x^3 4x^2 22x + 40 = 0$ given that its roots are in A.P.
 - b) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ then find $\sum (\beta + \gamma + \delta)^2$.
- 20. a) If $y = (x + \sqrt{1 + x^2})^m$ show that $(1 + x^2)y_2 + xy_1 m^2y = 0$.
 - b) Evaluate $\int \frac{2x+3}{x^2+x+1} dx$.
 - c) Evaluate $\int \frac{1}{(1+e^{x})(1+e^{-x})} dx$.
