STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted from the academic year 2023 – 2024)

M. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH III - PHYSICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : MATHEMATICAL PHYSICS - II

SUBJECT CODE : 23PH/PC/MP24

TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION A	CO	KL	
	(Answer ALL Questions) $10 \times 3 = 30 \text{ Marks}$			
1.	Find L[$\cos \omega t$].	CO1	K1	
2.	Find the Fourier sine transform of 1/x	CO1	K1	
3.	Express Laplace's equation in two dimensional cylindrical	CO1	K1	
4	coordinates (r,θ) .	CO2	IZO.	
4.	What is the one dimensional wave equation?	CO2	K2	
5.	What is orthogonality of Bessel's function?	CO2	K2	
6.	Define Hankel functions of first kind.	CO2	K2	
7.	Distinguish isomorphism and homomorphism of the group.	CO2	K2	
8.	What do you mean by cosets?	CO3	K3	
9.	Define Standard deviation and write its formula.	CO3	K3	
10.	State binomial theorem of probability	CO3	K3	
Q. No.	SECTION B	CO	KL	
	6×5=30 Marks			
	PART – A			
	Answer Any TWO Questions (2x5=10)	Π	T	
11.	Evaluate $L^{-1}\left\{\frac{3s-2}{s^3(s^2+4)}\right\}$	CO3	K3	
12.	Show that $H_n(-x) = (-1)^n H_n(x)$	CO3	К3	
13.	The mean and variance of binomial distribution are 8 and 6. Find $P(x \ge 2)$.	CO3	К3	
	PART – B		•	
	Answer Any FOUR Questions (4x5=20)			
14.	State and prove Convolution theorem.	CO4	K4	
15.	Solve the differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$,	CO4	K4	
	$if u(x,0) = \sin \Pi x.$			
16.	Prove $xJ_{n}'(x) = nJ_{n}(x) - xJ_{(n+1)}(x)$	CO4	K4	
17.	Describe character table and Construct the character table	CO4	K4	
	for C _{2v} point group.			
18.	The radius of a wire is measured in cm as 0.17, 0.15, 0.18, 0.19, 0.16, 0.17. Find the mean radius and the standard deviation.	CO4	K4	

Q. No.	SECTION C	CO	KL
	Answer ALL Questions 2×20=40 Marks		
19.	(i) a. Find the Laplace transform of sawtooth wave function	CO5	K5
	$f(t) = \frac{at}{T} \text{ for } 0 < t < T \text{ and } f(t+T) = f(t).$		
	b. Find the finite sine and cosine transform of $f(x) =$	CO5	K6
	$\sin ax$		
	(ii) a. Obtain the solution of wave equation by	CO5	K5
	D'Alembert's method.		
	b. Applying method of variable separation to solve the solution for three dimensional heat flow equation.	CO5	K6
20.	(i) a. Obtain the complete solution for Bessel differential equation.	CO5	K5
	b. Prove the orthogonality of Hermite polynomial.	CO5	K6
	(OR)		
	(ii) a. State and prove Orthogonality theorem of characters	CO5	K5
	in group theory.		
	b. Explicate Poisson's distribution and calculate its mean and moment generating function.	CO5	K 6
