STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted from the academic year 2023 – 2024)

M.Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH III PHYSICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : CLASSICAL MECHANICS

SUBJECT CODE: 23PH/PC/CM24

TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION-A	CO	KL
	(10x3 marks = 30 marks)		
1.	What is generalized coordinates? Write transformation	CO1	K1
2	equations.	CO1	K1
2. 3.	Brief the independent coordinates of a rigid body.	CO1	K1
4.	How does Hamiltonian differ from Lagrangian? What is the essence of Hamilton-Jacobi method?	CO1	K1
5.		CO ₂	K1 K2
3.	State conservation theorem for generalized momentum and angular momentum.	CO2	K2
6.	Write the Hamilton's canonical equations of motion.	CO2	K2
7.	What is Legendre's transformation?	CO2	K2
8.	Point out lemmas about the nature of the eigen values.	CO2	K2
9.	Obtain Euler's equation for the motion of a rigid body with	CO3	К3
	one point fixed.		
10.	Write a short note on the mechanics of small oscillations?	CO3	K3
Q. No.	SECTION-B	CO	KL
	$(8 \times 5 \text{ marks} = 40 \text{ marks})$		
	PART A		
	Answer any TWO questions $(2 \times 5 = 10 \text{ marks})$		
11.	Find the horizontal component of the Coriolis force acting	CO3	K3
	on a body of mass 1.5 kg, moving northward with a		
	horizontal velocity of 100 m/s at 30 N latitude on earth.		
12.	Show that the transformation, $Q = (2q)^{1/2} e^{\alpha} \cos p$; $P = (2q)^{1/2} e^{-\alpha} \sin p$ is canonical.	CO3	K3
13.	Find the principal axes and their associated moments of	CO3	K3
13.	inertia for a cube of mass 'M' and sides 'a'		
	PART B	CO	KL
	Answer any SIX questions $(6 \times 5 \text{ marks} = 30 \text{ marks})$		
14.	A particle is moving (consider radial motion only) in a	CO4	K4
	central field of force. (i) What is the effective potential in		
	which the radial motion occurs? (ii) Calculate the angular		
	frequency for circular orbit, if the central potential is $\frac{1}{2}$ (kr ²).		
15.	If 'T' be the kinetic energy, 'G' be the external torque about	CO4	K4
	the instantaneous axis of rotation and 'ω' the angular		
	velocity, then prove that the rate of change of kinetic energy		
	is equal to G . ω .		
16.	Using variational principle, deduce Hamitonian equations of	CO4	K4
	motion.		

	-		
17.	Show that the Poisson bracket of two constants of motion is itself a constant of motion using Jacobi's identity.	CO4	K4
18.	Derive the Lagrange's equations of motion for small oscillations.	CO4	K4
19.	Based on the concept of D'Alembert's principle, Obtain Lagrange's equation of motion of second kind.	CO4	K4
20.	Use Jacobi's form of principle of least action to obtain the equation of orbit for the Kepler's problem.	CO4	K4
21.	Calculate the normal frequencies of a linear triatomic molecule	CO4	K4
Q. No.	SECTION C	CO	KL
	Anguar any TWO questions (2 v 15 mayles 20 mayles)		
	Answer any TWO questions $(2 \times 15 \text{ marks} = 30 \text{ marks})$		
22.	Answer any I wo questions (2 x 15 marks = 30 marks) A uniform disc of radius 'a' and mass 'm' rotates about a fixed axis. A massless rope is fixed to a point on the outside circumference and leads to massless spring which is in turn fastened to a fixed point. At a radius 'a/2' another cord is fastened to a spring which connects to a mass 'm'. Set up the Lagrange's equation of the disc and the mass.	CO5	K5
22.	A uniform disc of radius 'a' and mass 'm' rotates about a fixed axis. A massless rope is fixed to a point on the outside circumference and leads to massless spring which is in turn fastened to a fixed point. At a radius 'a/2' another cord is fastened to a spring which connects to a mass 'm'. Set up the	CO5	K5
	A uniform disc of radius 'a' and mass 'm' rotates about a fixed axis. A massless rope is fixed to a point on the outside circumference and leads to massless spring which is in turn fastened to a fixed point. At a radius 'a/2' another cord is fastened to a spring which connects to a mass 'm'. Set up the Lagrange's equation of the disc and the mass. Discuss and analytically solve the equations of motion for a		
