STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 86
(For candidates admitted from the academic year 2023-2024)
M.Sc. DEGREE EXAMINATION, APRIL 2024

BRANCH I - MATHEMATICS
SECOND SEMESTER

COURSE	$:$	ELECTIVE	
PAPER	$:$	MECHANICS	
SUBJECT CODE	$:$	23MT/PE/ME15	
TIME	$:$	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A (5 $\times \mathbf{2}=\mathbf{1 0)}$ Answer ALL questions	CO	KL
1.	Write Lagrange's equation in Nielsen form.	1	1
2.	State the Hamiton's principle for monogenic system.	1	1
3.	Define instantaneous axis of rotation.	1	1
4.	State Hertz's principle of least curvature.	1	1
5.	Define configuration phase and phase space.	1	1

Q. No.	SECTION B (10×1=10) Answer ALL questions	CO	KL
6.	A reference frame in which the equation $F=\frac{d p}{d t}$ is valid is termed: a) Inertial system b) Curvilinear system c) Non-inertial system d) Rotating system	2	2
7.	What is the degree of freedom of a system consisting of 2 N particles, free from constraints? a) 2 N b) 3 N c) 4 N d) 6 N	2	2
8.	What method is used to eliminate extra virtual displacements? a) Hamilton's principle b) Poisson's equation c) Lagrange multipliers d) Newton's second law	2	2
9.	Which curve was discovered to be the solution to the Brachistochrone problem? a) Circle b) Parabola c) Cycloid d) Ellipse	2	2
10.	Which axis does the Pitch rotation occur around in the Tait-Bryan angles representation? a) X -axis b) Y-axis c) Z-axis d) None of the above	2	2

11.	What equation represents the relationship between the angular momentum vector (L) and the angular velocity vector (ω) for a rigid body?	2	2
a) $L=I \times \omega \quad$ b) $L=I \pm \omega \quad$ c) $L=I \cdot \omega \quad$ d) $L=\frac{d I}{d t}$			
12.	If the Lagrangian of a system is not explicitly dependent on time, then: a) The system does not conserve energy b) The system has no conserved quantities c) Cyclic coordinates are linear functions of time in steady motion d) The system undergoes chaotic motion	2	2
13.	Which characteristic of a system's transfer function can be determined using Routh's criterion? a) Gain margin b) Phase margin \quad c) Number of poles \quad d) Stability	2	2
14.	What is the role of a generating function of a canonical transformation? a) It determines the form of Hamilton's equations. b) It serves as a bridge between two sets of canonical variables. c) It represents the total energy of the system. d) It determines the potential energy of the system.	2	2
15.	Are Poisson brackets invariant under canonical transformations? a) Yes, they remain unchanged b) No, they change arbitrarily c) Only in certain cases d) It depends on the specific transformation	2	2

Q. No.	SECTION C $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
16.	(a) Discuss the problem of Atwood's machine using Lagrange's formulation. (b) Discuss the motion of one particle using Cartesian coordinates.	3	3
17.	(a) Derive the Lagrange's equation from Hamilton's Principle. (b) Demonstrate the reciprocal relationship between the Poisson bracket and the Lagrange bracket.	3	3

18.	（a）Obtain the total energy for a system consisting of a heavy symmetrical top with one fixed point． （b）Obtain Hamilton＇s canonical equations of motion．	3	3
19.	State and Prove the principle of least action in Jacobi form	3	3

Q．No．	SECTION D $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
20.	Prove that the magnitude R of the position vector for the centre of mass from an arbitrary origin is given by the equation $M^{2} R^{2}=M \sum_{i} m_{i} r_{i}^{2}-\frac{1}{2} \sum_{i, j} m_{i} m_{j} r_{i j}^{2}$.	4	4
21.	（a）Illustrate the application of the Lagrange multiplier method by considering the example of a loop rolling without slipping down an inclined plane． （b）Obtain the shortest distance between two points in a plane．	4	4
22.	（a）The Lagrangian for system can be written as $L=a x^{2}+b \frac{\dot{y}}{x}+c \dot{x} \dot{y}+f y^{2} \dot{x} \dot{z}+g y^{2}-k \sqrt{x^{2}+y^{2}}$, where a, b, c, f, g and k are constants．What is the Hamiltonian？What quantities are conserved？ (b) Derive the expression for Coriolis force．	4	4
23.	Solve the problem of the simple harmonic oscillator in one dimension using a canonical transformation．	4	4

Q．No．	SECTION E $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$ Answer ANY TWO questions	CO	KL
24.	State and prove D＇Alembert＇s principle．	5	5
25.	（a）Obtain the minimum surface of revolution (b) Show directly that the transformation $Q=\log \left(\frac{1}{q} \sin p\right), P=q \cot p$ is canonical．	5	5
26.	Prove that the real orthogonal matrix specifying the physical motion of a rigid body with one point fixed always has the eigen value +1.	5	5
27.	Derive the Hamiton＇s Equations from variational principle．	5	5

