STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024)

M.Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I - MATHEMATICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : MEASURE THEORY AND INTEGRATION

SUBJECT CODE : 23MT/PC/MI24

TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ALL questions		
1.	Define Borel sets.	1	1
2.	Define measurable function.	1	1
3.	Define outer measure and give an example.	1	1
4.	When do you say that a signed measure ν on $[X, S]$ is σ -finite?	1	1
5.	State Cauchy-Schwarz inequality.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
6.	For any set A there exists a measurable set E containing A and such that	2	2
	(a) $m^*(A) = m(E)$ (b) $m^*(A) \neq m(E)$		
	(c) $m^*(A) > m(E)$ (d) none of these		
7.	Let $[I_n]$ be a finite set of intervals covering the rationals in $[0,1]$. Then	2	2
	$\sum l(I_n)$ is		
	(a) 0 (b) 1 (c) ≥ 1 (d) ≤ 1		
8.	A measurable function f is essentially bounded if	2	2
	(a) $ess \sup f > \infty$ (b) $ess \sup f < \infty$		
	(c) $ess \sup f = \infty$ (d) $ess \sup f \neq \infty$		
9.	Which of the following is not true for integrable function f	2	2
	(a) $f = 0$ a.e. $\Rightarrow \int f dx = 0$		
	(b) if $f \le g$ a.e. $\Rightarrow \int f dx \le \int g dx$		
	(c) f is finite-valued a.e.		
	(d) None of the above		
10.	A measure μ on \mathcal{R} is σ - finite if,	2	2
	(a) $\mu(E_n) \to \infty$ (b) $\mu(E_n) = \infty$ (c) $\mu(E_n) < \infty$ (d) $\mu(E_n) > \infty$		
11.	Which of the following is not true?	2	2
	(a) The class of finite unions of intervals of the form $[a, b)$ forms a ring.		
	(b) Every algebra is a ring		
	(c) Every σ - algebra is a σ -ring		
	(d) Every σ - ring is σ -algebra		
12.	If two measures v_1 and v_2 are mutually singular then we denote it by	2	2
	(a) $\nu_1 \ge \nu_2$ (b) $\nu_1 \perp \nu_2$ (c) $\nu_1 \rightarrow \nu_2$ (d) none of these		
13.	A is a positive set with respect to the signed measure ν on $[X, S]$, if	2	2
	(a) $A \in \mathcal{S}$ and $\nu(E) \ge 0$ for all $E \subseteq A$		
	(b) $A \in \mathcal{S}$ and $\nu(E) > 0$ for all $E \subseteq A$		
	(c) $A \in \mathcal{S}$ and $\nu(E) \leq 0$ for all $E \subseteq A$		
	(d) $A \in \mathcal{S}$ and $\nu(E) = 0$ for all $E \subseteq A$		

..2

14.	The variance of Bernoulli distribution is		2	2
	(a) $np(1-p)$ (b) $p(1-p)$	$(c) \frac{1-p}{p} \qquad (d) 0$		
15.	Let X and Y be random variables on $(\Omega,$	\mathcal{F}, P) such that $E X ^p < \infty$,	2	2
	$ E Y ^p < \infty$ for some $1 \le p \le \infty$. Then	$(E X+Y ^p)^{1/p} \le (E X ^p)^{1/p} +$		
	$(E Y ^p)^{1/p}$			
	(a) Cauchy-Schwarz inequality	(b) Holder's inequality		
	(c) Minkowski's inequality	(d) Jensen's inequality		

Q. No.	SECTION C $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
16.	Show that the outer measure of an interval equals its length.	3	3
17.	State and prove Fatou's lemma.	3	3
18.	Let f and g be integrable functions. Show that $af + bg$ is integrable and	3	3
	$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu. \text{ If } f = g \text{ a.e. then } \int f d\mu = \int g d\mu.$		
19.	Let $[X, S, \mu]$ and $[Y, J, \nu]$ be σ -finite measure spaces. For $V \in S \times J$ write	3	3
	$\phi(x) = v(V_x), \psi(y) = \mu(V^y)$, for each $x \in X, y \in Y$. Prove that ϕ is S -		
	measurable, ψ is \mathcal{J} -measurable and $\int_X \phi \ d\mu = \int_Y \psi \ d\nu$.		

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
20.	Show that the following conditions on the set <i>E</i> are equivalent:	4	4
	(i) E is measurable		
	(ii) for all $\epsilon > 0$ there exists an open set, $0 \supseteq E$ such that $m^*(0 - E) \le$		
	ϵ ,		
	(iii) there exists a G_{δ} -set, G containing E such that $m^*(G - E) = 0$.		
21.	Discuss Riemann integrable over $[a, b]$. Also prove that if f is Riemann	4	4
	integrable and bounded over the finite interval $[a, b]$, then f is integrable and		
	$R \int_a^b f dx = \int_a^b f dx.$		
22.	If μ is a measure on a σ - ring S , show that \overline{S} of sets of the form $E\Delta N$ for any	4	4
	sets E, N such that $E \in S$ where N is contained in some set in S of zero		
	measure, is a σ -ring, and the set function $\overline{\mu}$ defined by $\overline{\mu}(E\Delta N) = \mu(E)$ is a		
	complete measure on $\overline{\mathcal{S}}$.		
23.	State and prove Lebesgue decomposition theorem.	4	4

Q. No.	$SECTION E (2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
24.	Prove that every interval is measurable.	5	5
25.	Construct a non-measurable set of [0,1].	5	5
26.	Let ν be a signed measure on $[X, S]$. Let $E \in S$ and $\nu(E) > 0$. Prove that	5	5
	there exists A, a set positive with respect to ν , such that $A \subseteq E$ and $\nu(A) >$		
	0.		
27.	If \mathcal{A} is an algebra, prove that $\mathcal{S}(\mathcal{A}) = \mathcal{M}_0(\mathcal{A})$.	5	5