STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 86
(For candidates admitted from the academic year 2023-2024)
M.Sc. DEGREE EXAMINATION, APRIL 2024

BRANCH I - MATHEMATICS
SECOND SEMESTER

COURSE	$:$	MAJOR CORE	
PAPER	$:$	LINEAR ALGEBRA	
SUBJECT CODE	$:$	23MT/PC/LA24	
TIME	$:$	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A (5 $\times \mathbf{2}=\mathbf{1 0})$ Answer ALL questions	CO	KL
1.	What are the characteristic values of a Nilpotent transformation on a finite dimensional vector space V over a field $F ?$	1	1
2.	If V is a vector space over a field F and $T \in A(V)$, then how would you convert V into an $F[x]-$ module?	1	1
3.	What is the relationship between the characteristic and minimal polynomials for a linear operator T on a finite dimensional vector space?	1	1
4.	When do you say that the complex $n \times n$ matrices A and B are unitarily equivalent?	1	1
5.	State Principal Axis Theorem.	1	1

Q. No.	SECTION B (10 $\times 1=10$) Answer ALL questions	CO	KL
6.	If $\mathrm{T} \in A(V)$, then which of the following is an example of an invariant subspace? (i) $\operatorname{Ker} T$ (ii) $V T$ (iii) $\{0\}$ (iv) All of the above	2	2
7.	The index of nilpotence of a nilpotent transformation $T: \mathbb{R}^{(2)} \rightarrow \mathbb{R}^{(2)}$ defined by $(x, y) T=(x-y, x-y)$ is \qquad (i) 3 (ii) 2 (iii) 4 (iv) 5	2	2
8.	The Jordan form of the matrix $\left(\begin{array}{cc}1 & 0 \\ -3 & 5\end{array}\right)$ is \qquad (i) $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$ (ii) $\quad\left(\begin{array}{ll}1 & 1 \\ 0 & 5\end{array}\right)$ (iii) $\left(\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right)$ (iv) $\quad\left(\begin{array}{rr}1 & 1 \\ -3 & 5\end{array}\right)$	2	2

9.	The companion matrix of the polynomial $x^{3}+7 x^{2}-9 x+3$ is \qquad (i) $\quad\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 7 & -9 & 3\end{array}\right)$ (ii) $\quad\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & -9 & 7\end{array}\right)$ (iii) $\quad\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -7 & 9 & -3\end{array}\right)$ (iv) $\quad\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & 9 & -7\end{array}\right)$	2	2
10.	The minimal and the characteristic polynomial of an $n \times n$ identity matrix are respectively \qquad (i) $\quad x-1$ and $x^{n}-1$ (ii) $\quad x^{n}-1$ and $(x-1)^{n}$ (iii) $\quad x-1$ and $(x-1)^{n}$ (iv) $\quad(x-1)^{n}$ and $x^{n}-1$	2	2
11.	The characteristic values of an $n \times n$ triangular matrix are always (i) Non-negative entries of the main diagonal (ii) The super diagonal entries (iii) The main diagonal entries (iv) Zeros	2	2
12.	The characteristic values of a self-adjoint linear operator on a finite dimensional inner product space are (i) Only zeros (ii) Complex numbers (iii) Real numbers (iv) Of absolute value 1 only	2	2
13.	A complex $n \times n$ matrix A is called unitary if (i) $\mathrm{A}=\mathrm{A}^{*}$ (ii) $\mathrm{AA}^{*}=\mathrm{A} * \mathrm{~A}$ (iii) $\mathrm{A}=-\mathrm{A}^{*}$ (iv) $A A^{*}=I=A * A$	2	2
14.	Every entry on the main diagonal of a positive matrix is \qquad (i) Positive (ii) Zero (iii) Negative (iv) All of the above	2	2
15.	A form f on a finite dimensional real or complex inner product space V is positive if \qquad (i) $\quad f$ is Hermitian and $f(\alpha, \alpha)>0$ for all $\alpha \neq 0$ in V (ii) $\quad f$ is Hermitian and $f(\alpha, \alpha) \geq 0$ for all $\alpha \neq 0$ in V (iii) $\quad f$ is Hermitian and $f(\alpha, \alpha)>0$ for every α in V (iv) $\quad f$ is Hermitian and $f(\alpha, \alpha) \geq 0$ for every α in V	2	2

Q. No.	SECTION C $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
16.	Apply your understanding of the relation between a linear transformation and a matrix in proving the following: If $T \in A(V)$ has all its characteristic roots in a field F, then there is a basis of V in which the matrix of T is triangular.	3	3
17.	How can you apply the fact that $T \in A(V)$ has minimal polynomial $p(x)$ in proving that V can be decomposed as $V=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{k}$ where each V_{i} is invariant subspace of V under T and the minimal polynomial of the induced transformation T_{i} is a factor of $p(x)$	3	3
18.	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.	3	3
19.	Let V and W be finite-dimensional inner product spaces over the same field, having the same dimension. If T is a linear transformation from V into W, then show that the following are equivalent. (i) T preserves inner products. (ii) T is an (inner product space) isomorphism. (iii) T carries every orthonormal basis for V onto an orthonormal basis for W.	3	3
(iv) T carries some orthonormal basis for V onto an orthonormal basis			
for W.			

Q. No.	SECTION D $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
20.	Show that the invariants of a nilpotent transformation T are unique.	4	4
21.	Show that every linear transformation $\mathrm{T} \in A(V)$ satisfies its characteristic polynomial.	4	4
22.	If T is a linear operator on a finite dimensional inner product space V and A is the matrix of T in the ordered orthonormal basis $B=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ of V, then prove that the matrix of T* is the conjugate transpose of the matrix of T.	4	4
23.	How would you relate a form and a linear operator to have an isomorphism between L(V,V) and the space of all forms?	4	4

Q. No.	SECTION E $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$ Answer ANY TWO questions	CO	KL
24.	Calculate all possible elementary divisors and rational canonical forms for the 6×6 matrices having $(x-1)\left(x^{2}+1\right)^{2}$ as minimal polynomial.	5	5
25.	Find the Characteristic and minimal polynomial of $\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$	5	5
26.	When will $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be (i) Orthogonal (ii) Unitary? Justify your answer.	5	5
27.	Let $\mathrm{F}=\mathbb{R}$ or \mathbb{C} and let A be an $n \times n$ matrix over F. Then prove that the function g defined by $g(\mathrm{X}, \mathrm{Y})=\mathrm{Y} * \mathrm{AX}$ is a positive form on the space $F^{n \times 1}$ if and only if there is an invertible $n \times n$ matrix over F such that $\mathrm{A}=\mathrm{P} * \mathrm{P}$	5	5

