STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 - 2024)

M.Sc. DEGREE EXAMINATION, APRIL 2024 **BRANCH I - MATHEMATICS** SECOND SEMESTER

COURSE **MAJOR CORE**

PAPER LINEAR ALGEBRA SUBJECT CODE : 23MT/PC/LA24 TIME : 3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ALL questions		
1.	What are the characteristic values of a Nilpotent transformation on a	1	1
	finite dimensional vector space <i>V</i> over a field <i>F</i> ?		
2.	If V is a vector space over a field F and $T \in A(V)$, then how would you	1	1
	convert V into an $F[x]$ - module?		
3.	What is the relationship between the characteristic and minimal	1	1
	polynomials for a linear operator <i>T</i> on a finite dimensional vector space?		
4.	When do you say that the complex $n \times n$ matrices A and B are unitarily	1	1
	equivalent?		
5.	State Principal Axis Theorem.	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$ Answer ALL questions	CO	KL
6.	If $T \in A(V)$, then which of the following is an example of an invariant subspace? (i) $Ker\ T$ (ii) VT (iii) $\{0\}$ (iv) All of the above	2	2
7.	The index of nilpotence of a nilpotent transformation $T: \mathbb{R}^{(2)} \to \mathbb{R}^{(2)}$ defined by $(x,y)T = (x-y,x-y)$ is	2	2
8.	The Jordan form of the matrix $\begin{pmatrix} 1 & 0 \\ -3 & 5 \end{pmatrix}$ is (i) $\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$ (ii) $\begin{pmatrix} 1 & 1 \\ 0 & 5 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 1 \\ 0 & 5 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 0 \\ 3 & 5 \end{pmatrix}$ (iv) $\begin{pmatrix} 1 & 1 \\ -3 & 5 \end{pmatrix}$	2	2

9.	The comr	panion matrix of the polynomial $x^3 + 7x^2 - 9x + 3$ is	2	2
		Salinon matrix of the polynomial $x + 7x = 9x + 3$ is		
	(i)	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$		
		$\begin{pmatrix} 7 & -9 & 3 \\ 0 & 1 & 0 \end{pmatrix}$		
	(ii)	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$		
	(11)	$\begin{pmatrix} 0 & 0 & 1 \\ 3 & -0 & 7 \end{pmatrix}$		
		(0 1 0)		
	(iii)	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$		
		\-7 9 -3/		
	(iv)	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$		
	(1V)	$\begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 7 \end{pmatrix}$		
10.	The mini	mal and the characteristic polynomial of an $n \times n$ identity matrix	2	2
	are respec			
	(i)	· · · · · · · · · · · · · · · · · · ·		
	(ii)	$x^n - 1$ and $(x - 1)^n$		
	(iii)	$x-1$ and $(x-1)^n$		
		$(x-1)^n$ and x^n-1		
11.		acteristic values of an $n \times n$ triangular matrix are always	2	2
	(i)	Non-negative entries of the main diagonal		
	(ii)	1 0		
	(iii) (iv)	The main diagonal entries Zeros		
12.	` ′	acteristic values of a self-adjoint linear operator on a finite	2	2
12.		nal inner product space are	2	2
	(i)	Only zeros		
	1 /	Complex numbers		
		Real numbers		
	(iv)	Of absolute value 1 only		
13.	-	ex $n \times n$ matrix A is called unitary if	2	2
	(i)	$A = A^*$		
		$AA^* = A^*A$		
	(iii) (iv)	$A = -A^*$ $A \wedge * - I - A * A$		
14.		$AA^* = I = A^*A$ ary on the main diagonal of a positive matrix is	2	2
17.	(i)	Positive		
	(ii)	Zero		
	(iii)	Negative		
	(iv)	All of the above		
15.	A form f	on a finite dimensional real or complex inner product space V	2	2
	is positive			
	(i)	f is Hermitian and $f(\alpha, \alpha) > 0$ for all $\alpha \neq 0$ in V		
	(ii)	f is Hermitian and $f(\alpha, \alpha) \ge 0$ for all $\alpha \ne 0$ in V		
	(iii)	f is Hermitian and $f(\alpha, \alpha) > 0$ for every α in V		
	(iv)	f is Hermitian and $f(\alpha, \alpha) \ge 0$ for every α in V	<u> </u>	

Q. No.	SECTION C $(2 \times 15 = 30)$ Answer ANY TWO questions	CO	KL
16.	Apply your understanding of the relation between a linear transformation	3	3
	and a matrix in proving the following:		
	If $T \in A(V)$ has all its characteristic roots in a field F , then there is a		
	basis of V in which the matrix of T is triangular.		
17.	How can you apply the fact that $T \in A(V)$ has minimal polynomial $p(x)$	3	3
	in proving that V can be decomposed as $V = V_1 \oplus V_2 \oplus \oplus V_k$ where		
	each V_i is invariant subspace of V under T and the minimal polynomial		
	of the induced transformation T_i is a factor of $p(x)$		
18.	Let <i>V</i> be a finite-dimensional vector space over the field <i>F</i> and let <i>T</i> be a	3	3
	linear operator on V . Then prove that T is triangulable if and only if the		
	minimal polynomial for T is a product of linear polynomials over F .		
19.	Let V and W be finite-dimensional inner product spaces over the same	3	3
	field, having the same dimension. If T is a linear transformation from V		
	into W, then show that the following are equivalent.		
	(i) T preserves inner products.		
	(ii) T is an (inner product space) isomorphism.		
	(iii) T carries every orthonormal basis for V onto an orthonormal basis		
	for W.		
	(iv) T carries some orthonormal basis for V onto an orthonormal basis		
	for W.		

Q. No.	$SECTION D (2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
20.	Show that the invariants of a nilpotent transformation T are unique.	4	4
21.	Show that every linear transformation $T \in A(V)$ satisfies its characteristic polynomial.	4	4
22.	If T is a linear operator on a finite dimensional inner product space V and A is the matrix of T in the ordered orthonormal basis $B = \{\alpha_1, \alpha_2,, \alpha_n\}$ of V, then prove that the matrix of T* is the conjugate transpose of the matrix of T.	4	4
23.	How would you relate a form and a linear operator to have an isomorphism between $L(V,V)$ and the space of all forms?	4	4

Q. No.	SECTION E (2 × 10 = 20) Answer ANY TWO questions	CO	KL
24.	Calculate all possible elementary divisors and rational canonical forms for the 6×6 matrices having $(x-1)(x^2+1)^2$ as minimal polynomial.	5	5
25.	Find the Characteristic and minimal polynomial of $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$	5	5
26.	When will $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be (i) Orthogonal (ii) Unitary? Justify your answer.	5	5
27.	Let $F = \mathbb{R}$ or \mathbb{C} and let A be an $n \times n$ matrix over F. Then prove that the function g defined by $g(X, Y) = Y^*AX$ is a positive form on the space $F^{n \times 1}$ if and only if there is an invertible $n \times n$ matrix over F such that $A = P^*P$	5	5

