STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted from the academic year 2019-20 \& thereafter)
M. Sc. DEGREE EXAMINATION, APRIL 2024

BRANCH I - MATHEMATICS
FOURTH SEMESTER

COURSE	$:$ ELECTIVE
PAPER	$:$ CALCULUS OF VARIATION AND INTEGRAL EQUATIONS
SUBJECT CODE	$: 19 \mathrm{MT} /$ PE/CI15
TIME	$: 3$ hours

Section - A

Answer ALL questions (5 $\times 2=10$)

1. Write the Euler's equation for an extremizing the functional $I[y(x)]=\int_{a}^{b} F\left(x, y(x), y^{\prime}(x)\right) d x$ if F depends only on x and y^{\prime}.
2. State the Weirstrass - Erdmann corner conditions.
3. What is seperable kernel?
4. Define Fredholm alternative.
5. List out the application of Green's functions.

Section-B
Answer any FIVE questions ($5 \times 6=30$)
6. Show that there exists an extremal through any two points with distinct abscissae for the functional $I=\int_{0}^{b} e^{-2 y^{2}}\left(y^{\prime 2}-1\right) d x$
7. Find the extremum of the functional $I=\int_{x_{1}}^{x_{2}}\left(y^{\prime 2}+z^{\prime 2}+2 y z\right) d x$ with $y(0)=0$.
8. State Brachistochrone problem and also solve it.
9. Describe briefly the convolution integral.
10. Solve the Fredholm integral equation of the second kind $g(s)=s+\lambda \int_{0}^{1}\left(s t^{2}+s^{2} t\right) g(t) d t$.
11. Obtain the resolvent kernel for $g(s)=f(s)+\lambda \int_{0}^{s} e^{s-t} g(t) d t$.
12. Explain Dirac delta function.

Section - C
 Answer any THREE question ($\mathbf{3} \times \mathbf{2 0}=\mathbf{6 0}$)

13. (a) Determine the shape of a solid of revolution moving in a flow of gas with least resistance.
(b) Derive Euler-Poisson equation in testing the extremum of the functional depending on higher-order derivatives.
14. (a) Derive the transversality condition to find the extremal for functional with moving end points.
(b) Find the shortest path from the point $A(-2,3)$ to the point $B(2,3)$ located in the region $y \leq x^{2}$.
15. (a) Find the Eigen values and Eigen function of the homogeneous integral equation. $g(s)=\lambda \int_{1}^{2}\left[s t+\frac{1}{s t}\right] g(t) d t$.
(b) Solve the integral equation $g(s)=1+\lambda \int_{0}^{\pi} \sin (s+t) g(t) d t$.
16. (a) Solve the inhomogeneous Fredholm integral equation of the second kind $g(s)=2 s+\lambda \int_{0}^{1}(s+t) g(t) d t$ by the method of successive approximation to the third order.
(b) Explain briefly Fredholm theorem.
17. Reduce the boundary value problem to a Fredholm integral equation

$$
y^{\prime \prime}+\lambda y=0,0 \leq s \leq 1, \quad y(0)=0, \quad y^{\prime}(1)+v_{2} y(1)=1
$$

