STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-600 086 (For candidates admitted during the academic year 2019 – 20 & thereafter)

M.Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	:	CORE	
PAPER	:	DIFFERENTIAL GEOMETRY	
SUBJECT CODE	:	19MT/PC/DG44	
TIME	:	3 HOURS	MAX: 100 MARKS

SECTION – A Answer all the questions $(5 \times 2 = 10)$

- 1. Define arc length of a curve.
- 2. When a surface is said to be orientable?
- 3. Show that $\|\sigma_u \times \sigma_v\| = (EG F^2)^{\frac{1}{2}}$.
- 4. Find the second fundamental form of a plane $\sigma(u, v) = a + up + vq$.
- 5. Define gaussian and mean curvatures.

SECTION – B Answer any five questions $(5 \times 6 = 30)$

6. Let $\gamma(s)$ be a unit-speed curve and let $\varphi(s)$ be the angle through which a fixed unit vector must be rotated anti-clockwise to bring it into coincidence with the unit tangent vector t of

 γ . Then prove that $\kappa_s = \frac{d\varphi}{ds}$.

- 7. Compute the arc length of the curve $\gamma(t) = (e^{kt} cost, e^{kt} sint)$, where $-\infty < t < \infty$ and k is a non-zero constant.
- 8. Find the equation of the tangent plane of the surface patch $\sigma(u, v) = (u, v, u^2 v^2)$ at (1,1,0).
- 9. Prove that any tangent developable is isometric to (part of) a plane.
- 10. Calculate the first fundamental form of a sphere $\sigma(\theta, \varphi) = (\cos\theta \cos\varphi, \cos\theta \sin\varphi, \sin\theta)$.
- 11. State and prove Meusiner's theorem.
- 12. Define geodesic and prove that any geodesic has constant speed.

19MT/PC/DG44

SECTION – C Answer any three questions $(3 \times 20 = 60)$

- 13. Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 . Then prove that its curvature is $\kappa = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}$ and its torsion is $\tau = \frac{(\dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|^2}$.
- 14. (a) Let f: S₁ → S₂ be a diffeomorphism. If σ₁ is an allowable surface patch on S₁ then prove that f ∘ σ₁ is an allowable surface patch on S₂.
 (b) Describe an atlas for a generalized cylinder. (10+10)
- 15. Prove that a diffeomorphism $f: S_1 \to S_2$ is isometry if and only if, for any surface patch σ_1 of S_1 , the patches σ_1 and $f \circ \sigma_1$ of S_1 and S_2 respectively, have the same first fundamental form.
- 16. (a) State and prove Euler's theorem.
 - (b) Let N be the standard unit normal of a surface patch $\sigma(u, v)$. Then prove that

$$N_u = a\sigma_u + b\sigma_v$$
 and $N_v = c\sigma_u + d\sigma_v$ where $\begin{pmatrix} a & c \\ b & d \end{pmatrix} = -\mathcal{F}_I^{-1}\mathcal{F}_{II}.$ (12+8)

17. Calculate the gaussian curvature of the helicoid $\sigma(u, v) = (v \cos u, v \sin u, \lambda u)$ and catenoid $\sigma(u, v) = (\cosh u \cos v, \cosh u \sin v, u)$.
