STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted during the academic year 2023 - 2024)

B.Sc. DEGREE EXAMINATION APRIL 2024 BRANCH I - MATHEMATICS SECOND SEMESTER

COURSE: ALLIED - COREPAPER: PHYSICS FOR MATHEMATICS -IISUBJECT CODE: 23PH/AC/PM23TIME: 3 HOURS

MAX. MARKS: 100

Q. No.	SECTION A	CO	KL
	Answer ALL the questions(20x1=20)		
1.	What does Coulomb's law describe?	CO1	K1
	a) The force between two masses		
	b) The force between two charges		
	c) The force between two magnets		
	d) The force between two objects at rest		
2.	Which of the following materials typically exhibits the highest capacitance per unit volume?	CO1	K1
	a) Air b) Glass		
	c) Vacuum d) Dielectric material		
3.	What is the SI unit of electric flux?	CO1	K1
	a) Joule per coulomb b) Newton per meter squared		
	c) Volt per meter d) Newton meter squared per coulomb		
4.	Which factor affects electric potential difference the most	CO1	K1
	between two points in an electric field?		
	a) Distance between the points		
	b) Amount of charge at each point		
	c) Permittivity of the medium		
	d) Angle between the electric field lines and the surface		
5.	When the number of loops in a coil is increased the magnetic	CO1	K1
	induction will		
	a) Decreases b) Increases		
	c) Remains the same d) Fluctuates		
6.	Lorentz force describes	CO1	K1
	a) The force experienced by a charged particle moving in a magnetic field		
	b) The force experienced by a charged particle due to an		
	electric field		
	c) The force experienced by a mass moving in a gravitational		
	field d) The force experienced by a particle undergoing pueleer		
	d) The force experienced by a particle undergoing nuclear decay		

7.	The strength of an electromagnet depends on	CO1	K1
	a)Voltage b) Length of the wire		
	c) Temperature d) All of the above		
8.	What is the main principle behind the operation of a ballisti	ic CO1	K1
	galvanometer?		
	a) Electrostatic repulsion b) Magnetic induction		
	c) Thermal expansion d) Piezoelectric effect		
9.	Spherical aberration in lenses is due to:	CO1	K1
	a) Imperfections in lens material		
	b) Incorrect lens positioning		
	c) Variation in focal length		
	d) Inconsistency in focusing parallel light rays		
10.	What causes chromatic aberration in lenses primarily?	CO1	K1
	a) Uneven curvature of lens surfaces		
	b) Variation in refractive index with wavelength		
	c) Excessive lens thickness		
	d) Inadequate lens coating		
11.	What type of optical instrument is best suited for observing	C01	K1
	distant celestial objects such as stars, planets, and galaxies?		
	a) Telescope b) Binoculars		
	c) Magnifying glass d) Periscope		
12.	What is the primary function of the Hubble Space Telescop	e? CO1	K1
	a) To search for extra-terrestrial life		
	b) To study the formation and evolution of galaxies		
	c) To monitor weather patterns on Earth		
	d) To measure atmospheric conditions on Mars		
13.	What causes the formation of Newton rings?	CO1	K1
	a) Interference between reflected and transmitted light wave	es	
	b) Magnetic field interactions		
	c) Gravitational lensing		
1/	d) Quantum tunnelling Which of the following statements about thin films is true?	CO1	K1
14.	Which of the following statements about thin films is true? a) Thin films are typically hundreds of micrometers thick.		
	b) Thin films are used primarily in bulk manufacturing		
	processes.		
	c) Thin films can exhibit unique optical, electrical, and		
	mechanical properties.		
	d) Thin films are not applicable in the field of nanotechnolo	οσν	
		, 5 J	
15.	In a plane transmission grating, which factor primarily	CO1	K1
	influences the angular dispersion of the diffracted light?		
	a) Wavelength of incident light		
	b) Thickness of the grating		
	c) Width of the grating slits		
	d) Number of grating lines per unit length		1

	What happens to light when it undergoes polarization? a) It changes color b) It changes intensity	CO1	K1
	c) It changes direction d) It changes wavelength		
	In an inverting operational amplifier configuration, if a positive voltage is applied to the input terminal, what is the expected polarity of the output voltage? a) Positive b) Negative c) Zero d) It depends on the specific op-amp used	CO1	K1
	In an inverting operational amplifier configuration, what is the relationship between the input voltage and the output voltage?	CO1	K1
	 a) The output voltage is equal to the input voltage b) The output voltage is inversely proportional to the input voltage c) The output voltage is directly proportional to the input voltage d) The output voltage is independent of the input voltage 		
10		001	17.1
	 What does De Morgan's Theorem state? a) It states that the sum of two variables is equal to the product of their complements. b) It states that the product of two variables is equal to the sum of their complements. c) It states that the complement of the sum of two variables is equal to the product of their complements. d) It states that the complement of the product of two variables is equal to the sum of their complements. 		К1
	 What is the use of the Karnaugh map in digital logic design? a) To design combinational logic circuits b) To design sequential logic circuits c) To simulate circuit behavior d) To analyze circuit efficiency 	CO1	K1
Q. No.	SECTION B	CO	KL
1	Answer ALL the questions (10x2=20)	002	IZO.
21.	Define coulomb's law	CO2	K2
<u> 22.</u> 23.	What is electric potential? Write down the Biot savart law	CO2 CO2	K2 K2
<u> </u>	Define Lorentz force	CO2 CO2	K2 K2
24.	Define monochromatic aberration	CO2 CO2	K2 K2
25.	What is a coma?	CO2	K2 K2
20.	Define interference.	CO2	K2 K2
27.	Define diffraction.	CO2	K2
20.	Differentiate inverting and non-inverting amplifier	CO2	K2
30.	What is karnaugh map?	CO2	K2
Q. No.	SECTION C	CO	KL
L	Answer any TWO questions (2x20=40)		
31.	(a) Derive the equation for electric field due to uniformly charged hollow cylinder (10 marks)	CO3	K3

	(b) Obtain an expression for electric potential due to a point charge (10 marks)	CO4	K4
32.	(a) Derive the expression for force on a charge in a magnetic field. (10 marks)	CO3	K3
	(b) Explain the theory of moving coil ballistic galvanometer (10 marks)	CO4	K4
33.	(a) Explain spherical aberration in lenses (10 marks)	CO3	K3
	(b) Explain the phenomenon of interference due to reflected light. (10 marks)	CO4	K4
34.	(a) Explain the theory of plane transmission grating for normal incidence.(10 marks)	CO3	K3
	(b) State and verify De-Morgan's Theorem (10 marks)	CO4	K4
	SECTION D		
	Answer any FOUR questions(4 x 5= 20)		
35.	The radii of the inner and outer sphere of a spherical capacitor are $2x10^{-2}$ m and $6x10^{-2}$ m. If the dielectric medium between the plates is air, calculate the capacitance of the spherical capacitor if the outer is earthed and the inner sphere is positively charged.	CO5	K5
36.	Two point charges, $q_1 = 4 \times 10^{-6}$ C and $q_2 = -6 \times 10^{-6}$ C are placed 2 meters apart in a vacuum. Calculate the magnitude and direction of the electric force exerted on each charge.	CO5	K5
37.	Two lenses of focal lengths 8 cm and 4 cm are placed at a certain distance apart. Calculate the distance between the lenses if they form an achromatic combination.	CO5	K5
38.	In a Newton's ring experiment, the diameter of the 20th dark ring was found to be 5.82 mm and the 10th ring is 3.36mm. If the radius of the plano convex lens is 1m, calculate the wavelength of light used.	CO5	K5
39.	A parallel beam of monochromatic light is allowed to be incident normally on a plane grating having 1250 lines per cm and a second order spectral line is observed to be deviated through 30°. Calculate the wavelength of the spectral line.	CO5	K5
	Consider two point charges, $Q1=+3\mu C$ and $Q2=-2\mu C$, located at points A and B respectively. The distance between them is 2 m. Calculate the electric potential at a point P located 4 m from Q1 and 3 m from Q2.	CO5	K5
