STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086
(For candidates admitted during the academic year 2023-2024)

## B.Sc. DEGREE EXAMINATION APRIL 2024 <br> BRANCH I - MATHEMATICS <br> SECOND SEMESTER

| COURSE | $:$ ALLIED - CORE |
| :--- | :--- |
| PAPER | $:$ PHYSICS FOR MATHEMATICS -II |
| SUBJECT CODE | $:$ 23PH/AC/PM23 |
| TIME | $: 3$ HOURS |

MAX. MARKS : 100

| Q. No. | SECTION A <br> Answer ALL the questions | CO | KL |
| :---: | :--- | :--- | :--- |
| 1. | What does Coulomb's law describe? <br> a) The force between two masses <br> b) The force between two charges <br> c) The force between two magnets <br> d) The force between two objects at rest | CO1 | K1 |
| 2. | Which of the following materials typically exhibits the highest <br> capacitance per unit volume? <br> a) Air <br> c) Vacuum | CO1 | K1 |
| 3. | What is the SI unit of electric flux? <br> (a) Joule per coulomb b) Newton per meter squared <br> c) Volt per meter <br> d) Newton meter squared per coulomb | CO1 | K1 |
| 4. | Which factor affects electric potential difference the most <br> between two points in an electric field? <br> a) Distance between the points <br> b) Amount of charge at each point <br> c) Permittivity of the medium <br> d) Angle between the electric field lines and the surface | CO1 | K1 |
| 5. | When the number of loops in a coil is increased the magnetic <br> induction will | CO1 | K1 |
| a) Decreases <br> c) Remains the same | K) Increases <br> d) Fluctuates | Lorentz force describes <br> a) The force experienced by a charged particle moving in a <br> magnetic field <br> b) The force experienced by a charged particle due to an <br> electric field <br> c) The force experienced by a mass moving in a gravitational <br> field <br> d) The force experienced by a particle undergoing nuclear <br> decay | CO1 |


| 7. | The strength of an electromagnet depends on <br> a)Voltage <br> b) Length of the wire <br> c) Temperature <br> d) All of the above | CO1 | K1 |
| :---: | :---: | :---: | :---: |
| 8. | What is the main principle behind the operation of a ballistic galvanometer? <br> a) Electrostatic repulsion <br> b) Magnetic induction <br> c) Thermal expansion <br> d) Piezoelectric effect | CO1 | K1 |
| 9. | Spherical aberration in lenses is due to: <br> a) Imperfections in lens material <br> b) Incorrect lens positioning <br> c) Variation in focal length <br> d) Inconsistency in focusing parallel light rays | CO1 | K1 |
| $10 .$ | What causes chromatic aberration in lenses primarily? <br> a) Uneven curvature of lens surfaces <br> b) Variation in refractive index with wavelength <br> c) Excessive lens thickness <br> d) Inadequate lens coating | CO1 | K1 |
| 11. | What type of optical instrument is best suited for observing distant celestial objects such as stars, planets, and galaxies? <br> a) Telescope <br> b) Binoculars <br> c) Magnifying glass <br> d) Periscope | CO1 | K1 |
|  | What is the primary function of the Hubble Space Telescope? <br> a) To search for extra-terrestrial life <br> b) To study the formation and evolution of galaxies <br> c) To monitor weather patterns on Earth <br> d) To measure atmospheric conditions on Mars | CO1 | K1 |
|  | What causes the formation of Newton rings? <br> a) Interference between reflected and transmitted light waves <br> b) Magnetic field interactions <br> c) Gravitational lensing <br> d) Quantum tunnelling | CO1 | K1 |
| 14. | Which of the following statements about thin films is true? <br> a) Thin films are typically hundreds of micrometers thick. <br> b) Thin films are used primarily in bulk manufacturing processes. <br> c) Thin films can exhibit unique optical, electrical, and mechanical properties. <br> d) Thin films are not applicable in the field of nanotechnology | CO1 | K1 |
| 15. | In a plane transmission grating, which factor primarily influences the angular dispersion of the diffracted light? <br> a) Wavelength of incident light <br> b) Thickness of the grating <br> c) Width of the grating slits <br> d) Number of grating lines per unit length | CO1 | K1 |


| 16. | What happens to light when it undergoes polarization? <br> a) It changes color <br> b) It changes intensity <br> c) It changes direction <br> d) It changes wavelength | CO1 | K1 |
| :---: | :---: | :---: | :---: |
| 17. | In an inverting operational amplifier configuration, if a positive voltage is applied to the input terminal, what is the expected polarity of the output voltage? <br> a) Positive <br> b) Negative <br> c) Zero <br> d) It depends on the specific op-amp used | CO1 | K1 |
| 18. | In an inverting operational amplifier configuration, what is the relationship between the input voltage and the output voltage? <br> a) The output voltage is equal to the input voltage <br> b) The output voltage is inversely proportional to the input voltage <br> c) The output voltage is directly proportional to the input voltage <br> d) The output voltage is independent of the input voltage | CO1 | K1 |
|  | What does De Morgan's Theorem state? <br> a) It states that the sum of two variables is equal to the product of their complements. <br> b) It states that the product of two variables is equal to the sum of their complements. <br> c) It states that the complement of the sum of two variables is equal to the product of their complements. <br> d) It states that the complement of the product of two variables is equal to the sum of their complements. | CO1 | K1 |
| 20. | What is the use of the Karnaugh map in digital logic design? <br> a) To design combinational logic circuits <br> b) To design sequential logic circuits <br> c) To simulate circuit behavior <br> d) To analyze circuit efficiency | CO1 | K1 |
| Q. No. | SECTION B <br> Answer ALL the questions | CO | KL |
| 21. | Define coulomb's law | CO 2 | K2 |
| 22. | What is electric potential? | CO2 | K2 |
| 23. | Write down the Biot savart law | CO 2 | K2 |
| 24. | Define Lorentz force | CO2 | K2 |
| 25. | Define monochromatic aberration | CO2 | K2 |
| 26. | What is a coma? | CO2 | K2 |
| 27. | Define interference. | CO2 | K2 |
| 28. | Define diffraction. | CO2 | K2 |
| 29. | Differentiate inverting and non-inverting amplifier | CO2 | K2 |
| 30. | What is karnaugh map? | CO2 | K2 |
| Q. No. | SECTION C  <br> Answer any TWO questions $(2 \times 20=40)$ | CO | KL |
| 31. | (a) Derive the equation for electric field due to uniformly charged hollow cylinder <br> (10 marks) | CO 3 | K3 |


|  | (b) Obtain an expression for electric potential due to a point charge | CO4 | K4 |
| :---: | :---: | :---: | :---: |
| 32. | (a) Derive the expression for force on a charge in a magnetic field. <br> (10 marks) | CO 3 | K3 |
|  | (b) Explain the theory of moving coil ballistic galvanometer (10 marks) | CO 4 | K4 |
| 33. | (a) Explain spherical aberration in lenses | CO3 | K3 |
|  | (b) Explain the phenomenon of interference due to reflected light. <br> (10 marks) | CO4 | K4 |
| 34. | (a) Explain the theory of plane transmission grating for normal incidence. <br> (10 marks) | CO3 | K3 |
|  | (b) State and verify De-Morgan's Theorem (10 marks) | CO4 | K4 |
|  | SECTION D  <br> Answer any FOUR questions $(4 \times 5=20)$ |  |  |
| 35. | The radii of the inner and outer sphere of a spherical capacitor are $2 \times 10^{-2} \mathrm{~m}$ and $6 \times 10^{-2} \mathrm{~m}$. If the dielectric medium between the plates is air, calculate the capacitance of the spherical capacitor if the outer is earthed and the inner sphere is positively charged. | CO 5 | K5 |
| 36. | Two point charges, $\mathrm{q}_{1}=4 \times 10^{-6} \mathrm{C}$ and $\mathrm{q}_{2}=-6 \times 10^{-6} \mathrm{C}$ are placed 2 meters apart in a vacuum. Calculate the magnitude and direction of the electric force exerted on each charge. | CO5 | K5 |
| 37. | Two lenses of focal lengths 8 cm and 4 cm are placed at a certain distance apart. Calculate the distance between the lenses if they form an achromatic combination. | CO5 | K5 |
| 38. | In a Newton's ring experiment, the diameter of the 20th dark ring was found to be 5.82 mm and the 10th ring is 3.36 mm . If the radius of the plano convex lens is 1 m , calculate the wavelength of light used. | CO5 | K5 |
| 39. | A parallel beam of monochromatic light is allowed to be incident normally on a plane grating having 1250 lines per cm and a second order spectral line is observed to be deviated through $30^{\circ}$. Calculate the wavelength of the spectral line. | CO5 | K5 |
| 40. | Consider two point charges, $Q 1=+3 \mu C$ and $Q 2=-2 \mu C$, located at points $A$ and $B$ respectively. The distance between them is 2 m . Calculate the electric potential at a point P located 4 m from $Q 1$ and 3 m from $Q 2$. | CO5 | K5 |

