B.Sc. DEGREE EXAMINATION APRIL 2024
 BRANCH III - PHYSICS SIXTH SEMESTER
 PAPER : QUANTUM MECHANICS AND RELATIVITY

COURSE : MAJOR - CORE
SUBJECT CODE : 19PH/MC/QR64
TIME : 3 HOURS
MAX. MARKS :100

SECTION - A

ANSWER ALL QUESTIONS:
 I CHOOSE THE CORRECT ANSWER:

25 MARKS

1. The momentum (p) and wavelength (λ) of photon are related as
(a) $p=2 \lambda$
(b) $p=h \lambda$
(c) $p=\frac{h}{\lambda}$
(d) $p=\frac{h^{2}}{2 \lambda}$
2. Group velocity and wave velocity are equal in
(a) Dispersive medium
(b) non-dispersive medium
(b) Glass
(d) water
3. The state function for a particle is given by $\psi=A e^{-i k x}$. The positive probability density is
(a) A
(b) $\frac{A}{2}$
(c) A^{2}
(d) 1
4. Quantum mechanical tunneling largely depends on
(a) Height of barrier
(b) width of barrier
(c) wave function
(d) Temperature
5. The quantum mechanical operator for momentum is
(a) $\frac{-\hbar}{\nabla}$
(b) $\frac{-h}{\nabla}$
(c) $-i \hbar \nabla$
(d) $i \hbar \frac{\partial}{\partial t}$
6. For an operator A , if A^{\dagger} is the transpose of A^{-1} is the inverse and if the $A^{\dagger}=A^{-1}$, the operator is
(a) Linear
(b) Hermitian (c) unitary
(d) unitary
7. The Lorentz transformation equations relating to x and x^{\prime} is given by
(a) $x^{\prime}=k(v t-x)$
(b) $x^{\prime}=k(x-x)$
(c) $x^{\prime}=k(x-v t)$
(d) $k^{\prime}=k\left(v t-x^{2}\right)$
8. Newtonian's laws of motion hold good in which of the following frame of reference
(a) Inertial frame of reference (b) non-inertial frame of reference (c) both (d) none of the above
9. Which of the following equation is true for length contraction?
(a) $l_{0}=\sqrt{1-\left(\frac{v^{2}}{c^{2}}\right)}$
(b) $l=\sqrt{1-\left(\frac{v^{2}}{c^{2}}\right)}$
(c) $v=l_{0} \sqrt{1-\left(\frac{v^{2}}{c^{2}}\right)}$
(d) $l=l_{0} \sqrt{1-\left(\frac{v^{2}}{c^{2}}\right)}$
10. Relativistic formula for kinetic energy is
(a) $m c^{2}$
(b) $m c^{3}$
(c) $\left(\mathrm{m}-m_{0}\right) c^{2}$
(d) $\left(\mathrm{m}-m_{0}\right) c^{3}$

II. FILL IN THE BLANKS

11. \qquad is an experimental evidence for quantum theory.
12. Possible energies of particle in one dimensional box are \qquad .
13. The potential energy of free particle is \qquad
14. Accelerated frames are called \qquad frames.
15. The total relativistic energy of particle is \qquad

III. ANSWER BRIEFLY:

16. Define dual nature of particle. Give an example.
17. Write the normalized wave function for one dimensional potential well.
18. Show that the momentum of a free particle is constant of motion.
19. What is Newtonian relativity?
20. Define length contraction.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

($5 \times 6=30$)
21. Electrons are accelerated through 344 volts and are reflected from a crystal. The first reflection maximum occurs when glancing angle is 60°. Determine the spacing of the crystal.
22. A particle trapped in one dimensional infinite potential well of width L is given by $\psi=$ $\operatorname{Asin}\left(\frac{n \pi x}{L}\right)$ in the region: $\left\{\begin{array}{l}x>0 \\ x<L\end{array}\right.$.
23. State the commutation relation between linear momentum and Hamiltonian H .
24. An event occurs at $x=200 \mathrm{~m}, \mathrm{y}=5 \mathrm{~m}, \mathrm{z}=1 \mathrm{~m}$, and $\mathrm{t}=1 \times 10^{-4} \mathrm{sec}$ in a frame S . Find the coordinates of the event in a frame S^{\prime} which is moving with a velocity $2.7 \times 10^{5} \mathrm{~m} / \mathrm{s}$ to the frame along the $x-x$ ' axis using Lorentz transformation.
25. What is the length of the meter stick moving parallel to its length when its mass is $3 / 2$ of its rest mass?
26. Obtain the energy eigenvalues and eigenfunctions of a particle trapped in the potential $\mathrm{V}(\mathrm{x})=0$ for $0<\mathrm{x}<\mathrm{a}$ and $\mathrm{V}(\mathrm{x})=\infty$ otherwise. Show that the wave functions for the different energy levels of the particle trapped in the square well are orthogonal.
27. With examples explain linear operator.

SECTION - C

ANSWER ANY THREE QUESTIONS:

$(3 \times 15=45)$
28. Describe Davisson and Germer experiment on electron diffraction and show how the wave nature of electron in motion could be proved experimentally.
29. Derive Schrodinger's one-dimensional time-independent wave equation. What are the characteristics of this wave equation?
30. Define a Hermitian operator. Show that the eigenvalues of Hermitian operator are real.
31. Describe the Michelson-Morley experiment and explain the physical significance of negative results.
32. Deduce the formula for relativistic variation of mass with velocity. Briefly explain its significance.

