STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (For candidates admitted during the academic year 2019-2020 & thereafter)

B.Sc. DEGREE EXAMINATION APRIL 2024 BRANCH III - PHYSICS SIXTH SEMESTER : MAJOR – CORE : QUANTUM MECHANICS AND RELATIVITY : 19PH/MC/QR64 : 3 HOURS

MAX. MARKS :100

SECTION – A

ANSWER ALL QUESTIONS: I CHOOSE THE CORRECT ANSWER:

COURSE

SUBJECT CODE

PAPER

TIME

25 MARKS (10 X 1 = 10)

1. The momentum (p) and wavelength (λ) of photon are related as

(a)
$$p = 2\lambda$$
 (b) $p = h\lambda$ (c) $p = \frac{h}{\lambda}$ (d) $p = \frac{h^2}{2\lambda}$

- 2. Group velocity and wave velocity are equal in
 (a) Dispersive medium
 (b) Glass
 (c) water
- 3. The state function for a particle is given by $\psi = Ae^{-ikx}$. The positive probability density is

(a) A (b)
$$\frac{A}{2}$$
 (c) A^2 (d) 1

- 4. Quantum mechanical tunneling largely depends on
 - (a) Height of barrier(b) width of barrier(c) wave function(d) Temperature
- 5. The quantum mechanical operator for momentum is

(a)
$$\frac{-\hbar}{\nabla}$$
 (b) $\frac{-h}{\nabla}$ (c) $-i\hbar\nabla$ (d) $i\hbar\frac{\partial}{\partial t}$

- 6. For an operator A, if A^{\dagger} is the transpose of A^{-1} is the inverse and if the $A^{\dagger} = A^{-1}$, the operator is
 - (a) Linear (b) Hermitian (c) unitary (d) unitary
- 7. The Lorentz transformation equations relating to x and x' is given by
 (a) x' = k(vt x)
 (b) x' = k(x x)
 (c) x' = k(x vt)
 (d) k' = k(vt x²)
- 8. Newtonian's laws of motion hold good in which of the following frame of reference(a) Inertial frame of reference (b) non-inertial frame of reference (c) both (d) none of the above
- 9. Which of the following equation is true for length contraction?

(a)
$$l_0 = \sqrt{1 - (\frac{v^2}{c^2})}$$
 (b) $l = \sqrt{1 - (\frac{v^2}{c^2})}$ (c) $v = l_0 \sqrt{1 - (\frac{v^2}{c^2})}$ (d) $l = l_0 \sqrt{1 - (\frac{v^2}{c^2})}$

10. Relativistic formula for kinetic energy is (a) mc^2 (b) mc^3 (c) $(m-m_0)c^2$ (d) $(m-m_0)c^3$

II. FILL IN THE BLANKS

- 11. _____ is an experimental evidence for quantum theory.
- 12. Possible energies of particle in one dimensional box are _____
- 13. The potential energy of free particle is _____
- 14. Accelerated frames are called ______ frames.
- 15. The total relativistic energy of particle is ______

 $(5 \times 1 = 5)$

 $(5 \times 2 = 10)$

III. ANSWER BRIEFLY:

- 16. Define dual nature of particle. Give an example.
- 17. Write the normalized wave function for one dimensional potential well.
- 18. Show that the momentum of a free particle is constant of motion.
- 19. What is Newtonian relativity?
- 20. Define length contraction.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

- 21. Electrons are accelerated through 344 volts and are reflected from a crystal. The first reflection maximum occurs when glancing angle is 60° . Determine the spacing of the crystal.
- 22. A particle trapped in one dimensional infinite potential well of width L is given by $\psi = Asin\left(\frac{n\pi x}{L}\right)$ in the region: $\begin{cases} x > 0 \\ x < L \end{cases}$.
- 23. State the commutation relation between linear momentum and Hamiltonian H.
- 24. An event occurs at x = 200m, y = 5m, z = 1m, and $t = 1 \times 10^{-4}$ sec in a frame S. Find the coordinates of the event in a frame S' which is moving with a velocity 2.7×10^5 m/s to the frame along the x x' axis using Lorentz transformation.
- 25. What is the length of the meter stick moving parallel to its length when its mass is 3/2 of its rest mass?
- 26. Obtain the energy eigenvalues and eigenfunctions of a particle trapped in the potential V(x) = 0 for 0 < x < a and $V(x) = \infty$ otherwise. Show that the wave functions for the different energy levels of the particle trapped in the square well are orthogonal.
- 27. With examples explain linear operator.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 28. Describe Davisson and Germer experiment on electron diffraction and show how the wave nature of electron in motion could be proved experimentally.
- 29. Derive Schrodinger's one-dimensional time-independent wave equation. What are the characteristics of this wave equation?
- 30. Define a Hermitian operator. Show that the eigenvalues of Hermitian operator are real.
- 31. Describe the Michelson-Morley experiment and explain the physical significance of negative results.
- 32. Deduce the formula for relativistic variation of mass with velocity. Briefly explain its significance.

 $(5 \times 6 = 30)$