STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086 (FOR candidates admitted from the academic year 2019-2020 & thereafter)

B.Sc. DEGREE EXAMINATION – APRIL 2024 BRANCH III – PHYSICS FOURTH SEMESTER

COURSE: MAJOR COREPAPER: MATHEMATICAL PHYSICSSUBJECT CODE: 19PH/MC/MP44TIME: 3 HOURS

MAX. MARKS : 100

(10 x 1 = 10)

SECTION – A

ANSWER ALL QUESTIONS: I CHOOSE THE CORRECT ANSWER:

	. If the fluid is compressible, then	
	a) $div\vec{v} = 0$ b) $\vec{v} \nabla \times \vec{V} = 0$ c) grad V=0 d) All of these	
-	. The example for a scalar point function is	
	a) Temperature b) Gravitational force c) velocity of a fluid d) Electric Intens	sity
	. The time varying electric field produces a magnetic field . This phenomenon is ca	•
	a) Kircchoff's law b) Faraday's law c) Ampere-Maxwell's law d) Hertz law	,
2		
	specific point in an electric field.	•
	a) Electric field b) kinetic energy c) Electrostatic potential d) potential ene	rgy
4	. Laplace's equation is applicable to	0.
	a) $\rho=0$ b) $\sigma=0$ c) $\lambda=0$ d) None of these	
(. Green's theorem is used to	
	a) Transform the line integral in the x-y plane to a surface integral in the same x-y	plane
	b) transform double integrals in to the triple integral in a region \mathbf{v} c) transform su	-
	integral in to a line integral d) All of these	
-	. The voltage drop across the inductance L is	
	a) q/c b) RI c) L (dI/dt) d) q/RI	
8	. The	
	a) Tension b) downward acceleration c) downward force d) Friction	
Ģ	. If two complex numbers a+ib and c+id are equal, then.	
	a) a=b, c=d b) a=c, b=d c) a=d, b=c d) None of these	
	0. The value of i ⁴⁹ is	
	a) i b) 1 c) -i d) -1	
		-
	ILL IN THE BLANKS (5 x 1	= 5)
	1. If ϕ_1 and ϕ_2 are orthogonal, then normal's are to each other.	
-	 A surface r=f (u,v) is called if f (u,v) possess continuous first order p derivatives. 	partial
	3. The circulation of vector F around a closed C is equal to the	of the
	curve of the vector through the surface bounded by the curve.	
	4. The algebraic sum of the voltage drop around any closed circuit is equal t	to the
	E.m.f in the circuit.	
		ł

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

 $(3 \times 15 = 45)$

III. ANSWER BRIEFLY

16. Define moment of a force.

- 17. Write Maxwell's equations.
- 18. Define double and triple integrals with one example each.
- 19. What are homogeneous and non-homogeneous linear differential equations?
- 20. State the fundamental laws of algebra on complex numbers.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 21. Find the directional derivative of $\phi(x, y, z) = x^2 yz + 4xz^2$ at (1,-2, 1) in the direction of $2\hat{i} \hat{j} 2\hat{k}$.
- 22. Deduce Gauss' law in differential form.
- 23. Find the divergence and curl of $\vec{v} = (xyz)\hat{i} + (3x^2y)\hat{j} + (xz^2 y^2z)\hat{k}$ at (2,-1,1).
- 24. A vector field is given by $\vec{F} = (\sin y)\hat{i} + (1 + \cos y)\hat{j}$. Evaluate the line integral over a circular path $x^2+y^2=a^2$, z=0
- 25. An inductance of 2 Henry and a resistance of 20 Ohms are connected in series with an Emf E volts. As the current is zero when t=0, find the current at the end of 0.01 sec if E=100 volts.
- 26. Geometrically represent and explain the addition and subtraction of complex numbers.
- 27. Show that the function $e^{x}(\cos y + i \sin y)$ is an analytic function. Also, find its derivative.

SECTION – C

ANSWER ANY THREE QUESTIONS:

- 28. A particle moves along the curve $\vec{r} = (t^3 4t)\hat{i} + (t^2 + 4t)\hat{j} + (8t^2 3t^3)\hat{k}$. where "t" is the time . Find the magnitude of the tangential components of its acceleration at t=2.
- 29. A fluid motion is given by $\vec{v} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$. Show that the motion is irrotational and hence find the velocity potential.
- 30. State Gauss divergence theorem. Use Gauss divergence theorem to evaluate $\iint_{S} \vec{A} ds$

where $\vec{A} = x^3\hat{i} + y^3\hat{j} + z^3\hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$

- 31. A particle falls under gravity in a resisting medium whose resistance varies with velocity. Find the relation between distance and velocity if initially the particle starts from rest.
- 32. Prove that $u = x^2 y^2 2xy 2x + 3y$ is harmonic. Find a function v such that f(z) = u+iv is analytic. Also express f(z) in terms of z.
