B.Sc. DEGREE EXAMINATION - APRIL 2024

BRANCH III - PHYSICS

FOURTH SEMESTER
COURSE
: MAJOR CORE
PAPER : MATHEMATICAL PHYSICS
SUBJECT CODE : 19PH/MC/MP44
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS:

I CHOOSE THE CORRECT ANSWER:

1. If the fluid is compressible, then
a) $d i v \vec{v}=0$
b) $\vec{v} \nabla \times \vec{V}=0$
c) $\operatorname{grad} V=0$
d) All of these
2. The example for a scalar point function is
a) Temperature
b) Gravitational force
c) velocity of a fluid
d) Electric Intensity
3. The time varying electric field produces a magnetic field .This phenomenon is called.
a) Kircchoff's law
b) Faraday's law
c) Ampere-Maxwell's law
d) Hertz law
4. \qquad .is the amount of work done to move a unit charge from infinity to a specific point in an electric field.
a) Electric field
b) kinetic energy
c) Electrostatic potential
d) potential energy
5. Laplace's equation is applicable to
a) $\rho=0$
b) $\sigma=0$
c) $\lambda=0$
d) None of these
6. Green's theorem is used to
a) Transform the line integral in the $x-y$ plane to a surface integral in the same $x-y$ plane
b) transform double integrals in to the triple integral in a region \mathbf{v} c) transform surface integral in to a line integral d) All of these
7. The voltage drop across the inductance L is
a) q / c
b) RI
c) $\mathrm{L}(\mathrm{dI} / \mathrm{dt})$
d) $q / R I$
8. The \qquad .in the string balances the mass mg hanging at the end
a) Tension
b) downward acceleration
c) downward force
d) Friction
9. If two complex numbers $a+i b$ and $c+i d$ are equal, then.
a) $a=b, c=d$
b) $a=c, b=d$
c) $a=d, b=c$
d) None of these
10. The value of i^{49} is
a) i
b) 1
c) -i
d) -1

II. FILL IN THE BLANKS

($5 \times 1=5$)
11. If ϕ_{1} and ϕ_{2} are orthogonal, then normal's are \qquad to each other.
12. A surface $r=f(u, v)$ is called \qquad if $f(u, v)$ possess continuous first order partial derivatives.
13. The circulation of vector F around a closed C is equal to the \qquad of the curve of the vector through the surface bounded by the curve.
14. The algebraic sum of the voltage drop around any closed circuit is equal to the
\qquad E.m.f in the circuit.
15. Two complex numbers which differ only in the sign of imaginary parts are called
\qquad of each other.

III. ANSWER BRIEFLY

16. Define moment of a force.
17. Write Maxwell's equations.
18. Define double and triple integrals with one example each.
19. What are homogeneous and non-homogeneous linear differential equations?
20. State the fundamental laws of algebra on complex numbers.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

$(5 \times 6=30)$
21. Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
22. Deduce Gauss' law in differential form.
23. Find the divergence and curl of $\vec{v}=(x y z) \hat{i}+\left(3 x^{2} y\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k}$ at $(2,-1,1)$.
24. A vector field is given by $\vec{F}=(\sin y) \hat{i}+(1+\cos y) \hat{j}$. Evaluate the line integral over a circular path $x^{2}+y^{2}=a^{2}, z=0$
25. An inductance of 2 Henry and a resistance of 20 Ohms are connected in series with an Emf E volts. As the current is zero when $\mathrm{t}=0$, find the current at the end of 0.01 sec if $\mathrm{E}=100$ volts.
26. Geometrically represent and explain the addition and subtraction of complex numbers.
27. Show that the function $e^{x}(\cos y+i \sin y)$ is an analytic function. Also, find its derivative.

SECTION - C
 ANSWER ANY THREE QUESTIONS:
 $(3 \times 15=45)$

28. A particle moves along the curve $\vec{r}=\left(t^{3}-4 t\right) \hat{i}+\left(t^{2}+4 t\right) \hat{j}+\left(8 t^{2}-3 t^{3}\right) \hat{k}$. where " t " is the time . Find the magnitude of the tangential components of its acceleration at $\mathrm{t}=2$.
29. A fluid motion is given by $\vec{v}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$. Show that the motion is irrotational and hence find the velocity potential.
30. State Gauss divergence theorem. Use Gauss divergence theorem to evaluate $\iint_{S} \vec{A} d s$ where $\vec{A}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$ and S is the surface of the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$
31. A particle falls under gravity in a resisting medium whose resistance varies with velocity. Find the relation between distance and velocity if initially the particle starts from rest.
32. Prove that $u=x^{2}-y^{2}-2 x y-2 x+3 y$ is harmonic. Find a function v such that $\mathrm{f}(\mathrm{z})=$ $\mathrm{u}+\mathrm{iv}$ is analytic. Also express $\mathrm{f}(\mathrm{z})$ in terms of z .
