COURSE	$:$	MAJOR CORE	
PAPER	$:$	ANALYTICAL GEOMETRY	
SUBJECT CODE	$:$	23MT/MC/AG24	
TIME	$:$	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A $(\mathbf{5} \times 2=10)$ Answer ANY FIVE questions	CO	KL
1.	Write the general equation of conic with centre at origin.	1	1
2.	Write any two properties of conjugate diameter of ellipse.	1	1
3.	Write the formula for length of the perpendicular from the origin to the plane $a x+b y+c z+d=0$	1	1
4.	Find the equation of the straight line joining the points origin and $(5,-2,3)$	1	1
5.	What is the equation of a circle on a sphere?	1	1
6.	What is meant by asymptotes?	1	1

Q. No.	SECTION B ($10 \times 1=10)$ Answer ALL questions	CO	KL
7.	The general second degree equation $a x^{2}+2 h x h+b y^{2}+2 g x+2 f y+c=o$ represents ellipse a) $a b-h^{2}=0$ b) $a b-h^{2}>0$ c) $\mathrm{ab}-\mathrm{h}^{2}<0$ d) $a+b=0$	2	2
8.	The equation $4 x^{2}-4 x y+y^{2}=100$ represents a) Circle b) Parabola c) Ellipse d) Hyperbola	2	2
9.	The eccentric angles of the ends of a pair of conjugate diameters differ by a) Acute angle b) Obtuse angle c) Right angle d) None of the above	2	2
10.	The asymptotes of a hyperbola meet the directrices lies on a) Director Circle b) Auxiliary Circle c) Diameter d) None of the above	2	2
11.	The equation of the plane passes through ($3,4,5$) parallel to the plane $2 x+3 y-z=0$ a) $2 x+3 y-z+2=0$ b) $2 x+3 y-z-11=0$ c) $2 x+3 y-z+5=0$ d) $2 x+3 y-z-13=0$	2	2
12.	Find the angle between the planes $\mathrm{x}-\mathrm{y}+2 \mathrm{z}-9=0$ and $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=7$ a) $\frac{\pi}{3}$ b) $\frac{\pi}{6}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{4}$	2	2
13.	Write the condition that the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-Z_{1}}{n}$ is parallel to the plane $a x+b y+c z+d=0$ a) $a+b+c=0$ b) $\mathrm{al}+\mathrm{bm}=1$ c) $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0$ d) None of the above	2	2

14.	A pair of line that do not intersect and are not parallel to each other is called a) Straight line b) Asymptotes c) skew line d) None of the above	2	2
15.	The coordinates of centre of the sphere is $x^{2}+y^{2}+z^{2}-6 x-2 y-4 z-11=0$ a) $(3,1,2)$ b) $(1,3,2)$ c) $(1,2,3)$ d) $(1,3,3)$	2	2
16.	The equation of the Sphere with centre $(-1,2,3)$ and radius 3 units a) $x^{2}+y^{2}+z^{2}-3 x-5 y-5=0$ b) $x^{2}+y^{2}+z^{2}+2 x-4 y+6 z+5=0$ c) $x^{2}+y^{2}+z^{2}-2 x-4 y-4 z-1=0$ d) $x^{2}+y^{2}+z^{2}-4 y-4 z-9=0$	2	2

Q. No.	SECTION C $(2 \times 15=30)$ Answer ANY TWO questions	CO	KL
17.	Show that the locus of the point of intersection of tangents at the ends of a pair of conjugate diameter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.	3	
18.	Derive the equation of the plane passing through the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{Z}_{1}\right)$, $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{Z}_{3}\right)$	3	3
19.	Find the distance of the point $(-5,-10,-1)$ from the point of intersection of the line $\frac{x+1}{4}=\frac{y-2}{12}=\frac{z-2}{12}$ and the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}+5=0$	3	3
20.	A Sphere of constant radius k passes through the origin and meets the axes in A,B,C. Prove that the centroid of the triangle ABC lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.	3	3

Q. No.	SECTION D $(\mathbf{2} \times \mathbf{1 5}=\mathbf{3 0})$ Answer ANY TWO questions	CO	KL
21.	Find the nature of the conic $17 \mathrm{x}^{2}-12 \mathrm{xy}+8 \mathrm{y}^{2}+46 \mathrm{x}-28 \mathrm{y}+17=0$	4	4
22.	If a straight line cuts a hyperbola in P and Q and its asymptotes in R and S then PR $=\mathrm{QS}$	4	4
23.	A variable plane which remains at a constant distance p from the origin and meets the axes in A, B, C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.	4	4
24.	Show that the plane $2 x-y-2 z=16$ touches the sphere $x^{2}+y^{2}+$ $z^{2}-4 x+2 y+2 z-3=0$ and find the point of contact.	4	4

Q. No.	SECTION E $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$ Answer ANY TWO questions	CO	KL
25.	Find the equation to the hyperbola which passes through $(2,3)$ and has for its asymptotes the lines $4 x+3 y-7=0$ and $x-2 y=1$.	5	5
26.	Find the equation of the plane passing through the points $(3,1,2),(3,4,4)$ and perpendicular to the plane $5 x+y+4 z=0$.	5	5
27.	Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-2}{2} \& \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Find also their point of intersection and the plane through them	5	5
28.	Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the point $(1,2,3)$	5	5

