STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024)

B.Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I - MATHEMATICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : ANALYTICAL GEOMETRY

SUBJECT CODE : 23MT/MC/AG24

TIME : 3 HOURS MAX. MARKS: 100

Q. No.	SECTION A $(5 \times 2 = 10)$	CO	KL
	Answer ANY FIVE questions		
1.	Write the general equation of conic with centre at origin.	1	1
2.	Write any two properties of conjugate diameter of ellipse.	1	1
3.	Write the formula for length of the perpendicular from the origin to the plane $ax + by + cz + d = 0$	1	1
4.	Find the equation of the straight line joining the points origin and $(5, -2, 3)$	1	1
5.	What is the equation of a circle on a sphere?	1	1
6.	What is meant by asymptotes?	1	1

Q. No.	SECTION B $(10 \times 1 = 10)$	CO	KL
	Answer ALL questions		
7.	The general second degree equation	2	2
	$ax^2 + 2hxh + by^2 + 2gx + 2fy + c = o$ represents ellipse		
	a) $ab - h^2 = 0$ b) $ab - h^2 > 0$ c) $ab - h^2 < 0$ d) $a + b = 0$		
8.	The equation $4x^2 - 4xy + y^2 = 100$ represents	2	2
	a) Circle b) Parabola c) Ellipse d) Hyperbola		
9.	The eccentric angles of the ends of a pair of conjugate diameters differ	2	2
	by		
	a) Acute angle b) Obtuse angle c) Right angle d) None of the above		
10.	The asymptotes of a hyperbola meet the directrices lies on	2	2
	a) Director Circle b) Auxiliary Circle		
	c) Diameter d) None of the above		
11.	The equation of the plane passes through (3,4,5) parallel to the plane	2	2
	2x + 3y - z = 0		
	a) $2x + 3y - z + 2 = 0$ b) $2x + 3y - z - 11 = 0$		
	c) $2x + 3y - z + 5 = 0$ d) $2x + 3y - z - 13 = 0$		
12.	Find the angle between the planes $x - y + 2z - 9 = 0$ and $2x + y + z = 7$	2	2
	a) $\frac{\pi}{3}$ b) $\frac{\pi}{6}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{4}$		
13.	Write the condition that the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is parallel to the plane	2	2
	ax + by + cz + d = 0		
	a) $a+b+c=0$ b) $al+bm=1$		
	c) $al + bm + cn = 0$ d) None of the above		

14.	A pair of line that do not intersect and are not parallel to each other is	2	2
	called		
	a) Straight line b) Asymptotes c) skew line d) None of the above		
15.	The coordinates of centre of the sphere is	2	2
	$x^2 + y^2 + z^2 - 6x - 2y - 4z - 11 = 0$		
	a) (3,1,2) b) (1,3,2) c) (1,2,3) d) (1,3,3)		
16.	The equation of the Sphere with centre (-1,2,3) and radius 3 units	2	2
	a) $x^2 + y^2 + z^2 - 3x - 5y - 5 = 0$ b) $x^2 + y^2 + z^2 + 2x - 4y + 6z + 5 = 0$		
	c) $x^2 + y^2 + z^2 - 2x - 4y - 4z - 1 = 0$ d) $x^2 + y^2 + z^2 - 4y - 4z - 9 = 0$		

Q.	SECTION C $(2 \times 15 = 30)$	CO	KL
No.	Answer ANY TWO questions		
17.	Show that the locus of the point of intersection of tangents at the ends of	3	3
	a pair of conjugate diameter of the ellipse		
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$.		
18.	Derive the equation of the plane passing through the points (x_1, y_1, z_1) ,	3	3
	$(x_2, y_2, z_2), (x_3, y_3, z_3)$		
19.	Find the distance of the point (-5,-10, -1) from the point of intersection	3	3
	of the line $\frac{x+1}{4} = \frac{y-2}{12} = \frac{z-2}{12}$ and the plane $x - y + z + 5 = 0$		
20.	A Sphere of constant radius <i>k</i> passes through the origin and meets the	3	3
	axes in A,B,C. Prove that the centroid of the triangle ABC lies on the		
	sphere $9(x^2 + y^2 + z^2) = 4k^2$.		

Q. No.	SECTION D $(2 \times 15 = 30)$	CO	KL
	Answer ANY TWO questions		
21.	Find the nature of the conic $17x^2 - 12xy + 8y^2 + 46x - 28y + 17 = 0$	4	4
22.	If a straight line cuts a hyperbola in P and Q and its asymptotes in R and	4	4
	S then $PR = QS$		
23.	A variable plane which remains at a constant distance p from the origin	4	4
	and meets the axes in A, B, C. Show that the locus of the centroid of the		
	tetrahedron OABC is $x^{-2} + y^{-2} + z^{-2} = 16p^{-2}$.		
24.	Show that the plane $2x - y - 2z = 16$ touches the sphere $x^2 + y^2 + $	4	4
	$z^2 - 4x + 2y + 2z - 3 = 0$ and find the point of contact.		

Q. No.	SECTION E $(2 \times 10 = 20)$	CO	KL
	Answer ANY TWO questions		
25.	Find the equation to the hyperbola which passes through (2,3) and has	5	5
	for its asymptotes the lines $4x + 3y - 7 = 0$ and $x - 2y = 1$.		
26.	Find the equation of the plane passing through the points	5	5
	(3,1,2), (3,4,4) and perpendicular to the plane $5x + y + 4z = 0$.		
27.	Prove that the lines $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-2}{2} & \frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$ are	5	5
	coplanar. Find also their point of intersection and the plane through		
	them		
28.	Find the equation of the sphere through the circle	5	5
	$x^2+y^2+z^2=9$, $2x+3y+4z=5$ and the point (1,2,3)		