STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019–20 & thereafter)

B. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE : MAJOR ELECTIVE

PAPER : NUMERICAL METHODS WITH PROGRAMS IN C (THEORY)

SUBJECT CODE: 19MT/ME/NM45

TIME : 105 MINUTES MAX. MARKS: 60

SECTION-A

ANSWER ANY TEN QUESTIONS:

 $10\times2=20$

- 1. Write down the condition for the convergence of Gauss-Jacobi iteration scheme.
- 2. State the order of convergence and convergence condition for Newton's Raphson method.
- 3. State Gauss's Backward Interpolation formula.

4. Find the missing term from the following table

Y 1 3 9 ? 81

5. Write Newton's forward formula to find the derivatives $\left(\frac{dy}{dx}\right)_{x=x_0}$, $\left(\frac{d^2y}{dx^2}\right)_{x=x_0}$.

6. Find y'(6) from the following data

X	1	2	7	8
Y	1	5	5	4

- 7. State Newton's-cote's quadrature formula.
- 8. When do you apply Simpson's $1/3^{rd}$ rule and Simpson's $3/8^{th}$ rule?
- 9. State the Euler's formula to solve y' = f(x, y) with $y(x_0) = y_0$.
- 10. Write down the Runge-kutta second order formula to solve y' = f(x, y) with $y(x_0) = y_0$.
- 11. Distinguish between Interpolation and extrapolation.
- 12. What is the order of error in the Trapezoidal rule and Simpon's 1/3rd rule?

SECTION-B

ANSWER ANY FIVE QUESTIONS:

 $5 \times 8 = 40$

13. Solve the following system by Gauss-Seidel method

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

$$6x + 3y + 12z = 35$$

14. Using Gauss's forward interpolation formula find f(32) given that

x	25	30	35	40	
f(x)	0.2707	0.3027	0.3386	0.3794	

15. Find the first derivative of the function tabulated below at x = 900 using stirling's formula

X	0	300	600	900	1200	1500	1800	
Y	135	149	157	183	201	205	193	

16. Evaluate $\int_4^{5.2} log_e x \, dx$ using Trapezoidal rule, Simpson's $1/3^{\rm rd}$ rule, Simpson's $3/8^{\rm th}$ rule, by dividing the range into six equal parts.

17. Compute y(0.2) given $\frac{dy}{dx} = x + y$ by Runge-Kutta fourth order by taking h = 0.1, y(0) = 1.

18. Using Lagrange's Interpolation formula, find v(13.6) from the following data

 S Eagrange s	micerporacion	formula, find y (1010) from the fone wing data				
x	30	35	40	45	50	
ν	15.9	14.9	14.1	13.3	12.5	

19. Find the positive root of $2x^3 - 3x - 6 = 0$ by Newton-Raphson method.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019–20 & thereafter)

SUBJECT CODE: 19MT/ME/NM45

B. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE : MAJOR ELECTIVE

PAPER : NUMERICAL METHODS WITH PROGRAMS IN C (PRACTICAL)
TIME : 75 MINUTES MAX. MARKS: 40

SECTION-C

ANSWER ANY TWO QUESTIONS:

 $2 \times 20 = 40$

- 20. Write a C program to find the smallest positive root of the equation $x^3 x + 1$ by using Bisection method.
- 21. Write a C program to interpolate the value of Y when X = 43 and X = 84 from the following data using Newton's Forward and Backward interpolation formula.

X	40	50	60	70	80	90
Y	184	204	226	250	276	304

22. Write a C program to Solve the Differential equation y' = -y; y(0) = 1 and get y(0.04), h = 0.01 by Euler's Method.

