STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

B. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	VECTOR SPACES AND LINEAR TRAI	NSFORMATIONS
SUBJECT CODE	:	19MT/MC/VL64	
TIME	:	3 HOURS	MAX. MARKS : 100

SECTION – A

ANSWER ANY TEN QUESTIONS.

 $(10 \times 2 = 20)$

- 1. Define a subspace of a vector space.
- 2. Determine whether the following set of vectors {(-1,2),(2,-4)} are linearly dependent (or) not.
- 3. State Orthogonal matrix theorem.
- 4. Define Kernel and range of a linear transformation.
- 5. Define matrix transformation.
- 6. Define affine transformation.
- 7. The following matrices A and C ,C is invertible. Use similarity transformation C⁻¹AC to transform A into a matrix B.

$$A = \begin{bmatrix} 7 & -10 \\ 3 & -4 \end{bmatrix} \ C = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

- 8. When a matrix is said to be orthogonally diagonalizable?
- 9. Define an inner product space.
- 10. Define an angle between two vectors.
- 11. Define orthogonal vectors.
- 12. State Rank-nullity theorem.

SECTION –B

ANSWER ANY FIVE QUESTIONS.

 $(5 \times 8 = 40)$

- 13. Show that the vectors (1,2,0),(0,1,-1),(1,1,2) span R³.
- 14. Show that the row space and column space of a matrix A have the same dimensions.
- 15. Prove that a linear transformation T is one to one if and only if the kernel is the zero vector.
- 16. Show that the following matrix.

a) $A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$ is diagonalizable.

b) Find a diagonal matrix D that is similar to A.

- 17. Find the least square parabola for the following data points (1,7),(2,2),(3,1),(4,3).
- 18. Let v₁, ..., v_m be vectors in a vector space V. Let U be the set consisting of all linear combination of v₁, ..., v_m. Then prove that U is a subspace of V spanned by the vectors v₁, ..., v_m. (U is said to be the vector space generated by v₁, ..., v_m. It is denoted span{v₁, ..., v_m}.)
- 19. Show that the following matrix $A = \begin{bmatrix} 5 & -3 \\ 3 & -1 \end{bmatrix}$ is not diagonalizable.

SECTION –C

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40)$

- 20. a) Let the vectors $v_1, ..., v_n$ span a vector space V. Prove that each vector in V can be expressed uniquely as a linear combination of these vectors if and only if the vectors are linearly independent.
 - b) Let $\{u_1, ..., u_n\}$ be an orthonormal basis for a vector space V. Let v be a vector in V, then prove that v can be written as a linear combination of these basis vectors as follows:

$$v = (v.u_1)u_1 + (v.u_2)u_2 + \dots + (v.u_n)u_n$$

- 21. a) State and prove the Gram-Schmidt Orthogonalization Process.
 - b) Let T be a linear transformation of $\mathbb{R}^n \to \mathbb{R}^n$. Prove that T is invertible if and only if it is nonsingular and also prove the inverse is unique and linear.
- 22. (a) Let A be an n x n matrix. Then prove the following

i) If *A* has *n* linearly independent eigen vectors then it is diagonalizable and another matrix C whose columns consist of *n* linearly independent eigen vectors can be used in a similarity transformation $C^{-1} AC$ to give a diagonal matrix D. The diagonal elements of D will be the eigen values of A.

ii) If A is diagonalize then it has n linearly independent eigen vectors.

(b) Find the fourth Fourier approximation to f(x) = x over the interval $[-\pi, \pi]$.
