B. Sc. DEGREE EXAMINATION, APRIL 2024
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE	$:$ MAJOR CORE
PAPER	$:$ VECTOR SPACES AND LINEAR TRANSFORMATIONS
SUBJECT CODE	$:$ 19MT/MC/VL64
TIME	$: 3$ HOURS

SECTION - A

ANSWER ANY TEN QUESTIONS.

1. Define a subspace of a vector space.
2. Determine whether the following set of vectors $\{(-1,2),(2,-4)\}$ are linearly dependent (or) not.
3. State Orthogonal matrix theorem.
4. Define Kernel and range of a linear transformation.
5. Define matrix transformation.
6. Define affine transformation.
7. The following matrices A and C, C is invertible. Use similarity transformation $\mathrm{C}^{-1} \mathrm{AC}$ to transform A into a matrix B .

$$
\mathrm{A}=\left[\begin{array}{cc}
7 & -10 \\
3 & -4
\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right]
$$

8. When a matrix is said to be orthogonally diagonalizable?
9. Define an inner product space.
10. Define an angle between two vectors.
11. Define orthogonal vectors.
12. State Rank-nullity theorem.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

13. Show that the vectors $(1,2,0),(0,1,-1),(1,1,2)$ span R^{3}.
14. Show that the row space and column space of a matrix A have the same dimensions.
15. Prove that a linear transformation T is one to one if and only if the kernel is the zero vector.
16. Show that the following matrix.
a) $\mathrm{A}=\left[\begin{array}{cc}-4 & -6 \\ 3 & 5\end{array}\right]$ is diagonalizable .
b) Find a diagonal matrix D that is similar to A.
17. Find the least square parabola for the following data points $(1,7),(2,2),(3,1),(4,3)$.
18. Let v_{1}, \ldots, v_{m} be vectors in a vector space V . Let U be the set consisting of all linear combination of v_{1}, \ldots, v_{m}. Then prove that U is a subspace of V spanned by the vectors v_{1}, \ldots, v_{m}. (U is said to be the vector space generated by v_{1}, \ldots, v_{m}. It is denoted $\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$.)
19. Show that the following matrix $A=\left[\begin{array}{ll}5 & -3 \\ 3 & -1\end{array}\right]$ is not diagonalizable.

SECTION -C

ANSWER ANY TWO QUESTIONS.
 $(2 \times 20=40)$

20. a) Let the vectors v_{1}, \ldots, v_{n} span a vector space V. Prove that each vector in V can be expressed uniquely as a linear combination of these vectors if and only if the vectors are linearly independent.
b) Let $\left\{u_{1}, \ldots, u_{n}\right\}$ be an orthonormal basis for a vector space V. Let v be a vector in V, then prove that v can be written as a linear combination of these basis vectors as follows:

$$
v=\left(v \cdot u_{1}\right) u_{1}+\left(v \cdot u_{2}\right) u_{2}+\ldots .+\left(v \cdot u_{n}\right) u_{n}
$$

21. a) State and prove the Gram-Schmidt Orthogonalization Process.
b) Let T be a linear transformation of $R^{n} \rightarrow R^{n}$. Prove that T is invertible if and only if it is nonsingular and also prove the inverse is unique and linear.
22. (a) Let A be an nx n matrix. Then prove the following
i) If A has n linearly independent eigen vectors then it is diagonalizable and another matrix C whose columns consist of n linearly independent eigen vectors can be used in a similarity transformation $\mathrm{C}^{-1} \mathrm{AC}$ to give a diagonal matrix D . The diagonal elements of D will be the eigen values of A .
ii) If A is diagonalize then it has n linearly independent eigen vectors.
(b) Find the fourth Fourier approximation to $f(x)=x$ over the interval $[-\pi, \pi]$.
