STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

B. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	:	MAJOR CORE
PAPER	:	SEQUENCE AND SERIES
SUBJECT CODE	:	19MT/MC/SS44
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION - A

ANSWER ANY TEN QUESTIONS:

 $(10 \times 2 = 20)$

- 1. Define composition of functions.
- 2. Define characteristic function.
- 3. State least upper bound axiom.
- 4. Define a sequence of real numbers.
- 5. Define limit of a sequence.
- 6. Define monotone sequence.
- 7. Define limit superior of a sequence.
- 8. Give an example of conditionally convergent series.
- 9. State the ratio test for absolute convergence.
- 10. State Cauchy condensation test.
- 11. Define Fourier series.
- 12. Define an even function.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

- 13. Prove that the set of all rational numbers is countable.
- 14. Prove that if $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequences of real numbers, if $\lim_{n \to \infty} s_n = L$, and if

 $\lim_{n \to \infty} t_n = M, \text{ then } \lim_{n \to \infty} (s_n + t_n) = L + M.$

- 15. Prove that if the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent, then $\{s_n\}_{n=1}^{\infty}$ is bounded.
- 16. Prove that if $\sum a_n$ is a convergent series then $\lim_{n \to \infty} a_n = 0$.
- 17. Show that the series $\sum_{n=1}^{\infty} 1/n$ is divergent.
- 18. State and prove comparison test.
- 19. Find a sine series for f(x) = c in the range 0 to π .

 $(2 \times 20 = 40)$

SECTION – C

ANSWER ANY TWO QUESTIONS:

20. a) Show that the set $[0,1] = \{x \mid 0 \le x \le 1\}$ is uncountable.

b) Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^n\right\}_{n=1}^{\infty}$ converges.

- 21. a) If $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence of real numbers, then prove that $\{s_n\}_{n=1}^{\infty}$ is convergent.
 - b) If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that
 - a) $a_1 \ge a_2 \ge ... \ge a_n \ge a_{n+1} \ge ...$ [i.e. $\{a_n\}_{n=1}^{\infty}$ is non-increasing] b) $\lim_{n \to \infty} a_n = 0$

then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.

- 22. a) State and prove Abel's Lemma.
 - b) Determine the Fourier series expansion of the function f(x) = x, in the interval $-\pi < x < \pi$.