STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019-20 & thereafter)

B. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	: MAJOR CORE	
PAPER	: PRINCIPLES OF MECHANICS	
SUBJECT CODE	: 19MT/MC/PM65	
TIME	: 3 HOURS	MAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS.

 $(10 \times 2 = 20)$

- 1. Define a force.
- 2. Define tension of a string.
- 3. Define Parallel forces.
- 4. Define Couple.
- 5. Define Cone of friction.
- 6. Define angle of friction.
- 7. Define Span and Sag of a common catenary.
- 8. Prove that $y^2 = c^2 + s^2$ for a common catenary.
- 9. Define Moment of Inertia.
- 10. State Perpendicular axes theorem.
- 11. State Triangle law of forces.
- 12. What is the Moment of Inertia of a circular ring about its diameter?

SECTION – B

ANSWER ANY FIVE QUESTIONS.

 $(5 \times 8 = 40)$

- 13. State and prove Lami's theorem.
- 14. Two like parallel force P and Q (P > Q) act at a points A and B or a rigid body.

If *P* and *Q* are interchanged, show that the point of the resultant is displayed by $\frac{P-Q}{P+Q}AB$.

- 15. Write the Laws of Statical friction.
- 16. Obtain the Cartesian equation of a common Catenary.
- 17. Obtain the Moment of Inertia of the rectangular lamina of sides 2a and 2b about its side 2a.
- 18. Show that if three forces acting on a rigid body are represented in magnitude and direction by the sides of a triangle taken in order, then they are equivalent to a couple of moment equal to twice the area of the triangle.
- 19. The resultant of two forces P and Q acting at an angle θ is $(2m + 1)\sqrt{P^2 + Q^2}$ while when P and Q are act an angle $\frac{\pi}{2} \theta$ the resultant is $(2m 1)\sqrt{P^2 + Q^2}$. Prove that $tan\theta = \frac{m-1}{m+1}$.

 $(2 \times 20 = 40)$

SECTION -C

ANSWER ANY TWO QUESTIONS.

20. (i) Forces of magnitude F_1 , F_2 , F_3 act at a point parallel to and in the direction of the sides BC, CA, AB of a triangle ABC respectively. Prove that the magnitude of the resultant is $(F_1^2 + F_2^2 + F_3^2 - 2F_2F_3\cos A - 2F_3F_1\cos B - 2F_1F_2\cos C)^{\frac{1}{2}}$ (10 marks)

- (ii) State and prove Varignon's theorem. (10 marks)
- 21. (i) A body of weight W is in equilibrium on a rough inclined plane of angle $\alpha \neq \lambda$ under the action of a force P upwards at an angle of θ to the line of the greatest slope in a vertical plane through the line of greatest slope. Find P if equilibrium is limiting, where λ is the angle of friction. (10 marks)
 - (ii) Obtain the Moment of inertia of a circular lamina of radius 'a' about its diameter.

(10 marks)

22. A particle falls under gravity (supposed constant) in a medium whose resistance varies as the square of the velocity. Discuss the motion and also calculate the velocity and displacement at (20 marks) any time t.