\left.		B. Sc. DEGREE EXAMINATION, APRIL 2024
BRANCH I - MATHEMATICS		$\right]$

SECTION - A

ANSWER ALL QUESTIONS.

1. Define a force.
2. Define tension of a string.
3. Define Parallel forces.
4. Define Couple.
5. Define Cone of friction.
6. Define angle of friction.
7. Define Span and Sag of a common catenary.
8. Prove that $y^{2}=c^{2}+s^{2}$ for a common catenary.
9. Define Moment of Inertia.
10. State Perpendicular axes theorem.
11. State Triangle law of forces.
12. What is the Moment of Inertia of a circular ring about its diameter?

SECTION -B
ANSWER ANY FIVE QUESTIONS.
13. State and prove Lami's theorem.
14. Two like parallel force P and $Q(P>Q)$ act at a points A and B or a rigid body.

If P and Q are interchanged, show that the point of the resultant is displayed by $\frac{P-Q}{P+Q} A B$.
15. Write the Laws of Statical friction.
16. Obtain the Cartesian equation of a common Catenary.
17. Obtain the Moment of Inertia of the rectangular lamina of sides 2 a and 2 b about its side 2 a .
18. Show that if three forces acting on a rigid body are represented in magnitude and direction by the sides of a triangle taken in order, then they are equivalent to a couple of moment equal to twice the area of the triangle.
19. The resultant of two forces P and Q acting at an angle θ is $(2 m+1) \sqrt{P^{2}+Q^{2}}$ while when P and Q are act an angle $\frac{\pi}{2}-\theta$ the resultant is $(2 m-1) \sqrt{P^{2}+Q^{2}}$. Prove that $\tan \theta=\frac{m-1}{m+1}$.

SECTION -C

ANSWER ANY TWO QUESTIONS.

20. (i) Forces of magnitude F_{1}, F_{2}, F_{3} act at a point parallel to and in the direction of the sides $B C, C A, A B$ of a triangle $A B C$ respectively. Prove that the magnitude of the resultant is $\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}-2 F_{2} F_{3} \cos A-2 F_{3} F_{1} \cos B-2 F_{1} F_{2} \cos C\right)^{\frac{1}{2}}$ (10 marks)
(ii) State and prove Varignon's theorem.
21. (i) A body of weight W is in equilibrium on a rough inclined plane of angle $\alpha(\neq \lambda)$ under the action of a force P upwards at an angle of θ to the line of the greatest slope in a vertical plane through the line of greatest slope. Find P if equilibrium is limiting, where λ is the angle of friction.
(ii) Obtain the Moment of inertia of a circular lamina of radius 'a' about its diameter.
(10 marks)
22. A particle falls under gravity (supposed constant) in a medium whose resistance varies as the square of the velocity. Discuss the motion and also calculate the velocity and displacement at any time t.
(20 marks)
