STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted from the academic year 2019-20 \& thereafter)

B. Sc. DEGREE EXAMINATION, APRIL 2024
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE	$:$ MAJOR CORE
PAPER	$:$ DISCRETE MATHEMATICS
SUBJECT CODE	$:$ 19MT/MC/DM43
TIME	$:$ 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ANY TEN QUESTIONS:

1. Construct the truth table for $\neg(p \wedge q)$
2. What is universal quantifier?
3. Write down the law of contraposition.
4. Define sublattice.
5. When is a lattice said to be complete?
6. Define Boolean algebra.
7. When is a Boolean expression called sum-of-product expression.
8. Draw the OR gate and construct its truth table.
9. What is a finite state machine?
10. Define non-deterministic finite state automaton.
11. Define language over a set of finite symbols.
12. Define phrase-structure grammar.

SECTION - B

ANSWER ANY FIVE QUESTIONS: $(5 \times 8=40)$
13. Obtain the disjunctive normal of $(\sim p \rightarrow r) \wedge(p \leftrightarrow q)$ using truth table.
14. If n is a positive integer, D_{n} the set of all divisors of n and D denotes the relation of division in such a way that for any $a, b \in D_{n}, a D b$ if and only if a divides b, Draw the Hasse diagram for D_{8}, D_{20} and D_{30}
15. State and establish modular inequality in lattice.
16. State and prove associative law in Boolean algebra using the principle of duality
17. Draw the logic circuit for $a b^{\prime}+b a^{\prime}$.
18. Find the transition diagram of the finite state automaton $M=\left(I, S, A, s_{0}, f\right)$ where $I=\{0,1\}, S=\left\{s_{0}, s_{1}, s_{2}\right\}, A=\left\{s_{2}\right\}, s_{0}$ is the initial state and the transition function is Given by

$$
\begin{aligned}
& f\left(s_{0}, 0\right)=s_{1}, f\left(s_{0}, 1\right)=s_{0} \\
& f\left(s_{1}, 0\right)=s_{2}, f\left(s_{1}, 1\right)=s_{0} \\
& f\left(s_{2}, 0\right)=s_{2}, f\left(s_{2}, 1\right)=s_{0} .
\end{aligned}
$$

19. Find the language $L(G)$ generated by the grammar G with variables $\sigma, A, B ; T=\{a, b\}$ and productions $P=\{\sigma \rightarrow a B, B \rightarrow b, B \rightarrow b A, A \rightarrow a B\}$

SECTION - C

ANSWER ANY TWO QUESTIONS:

20. (a) Show that the propositions $\neg(p \wedge q)$ and $\neg p \vee \neg q$ are logically equivalent.
(b) Without constructing truth table, Obtain the conjunctive and disjunctive normal forms of $(p \vee q) \leftrightarrow(p \wedge q)$
21. (a) State and establish distributive inequalities in lattice.
(b) Construct the truth table for the Boolean function $f: B_{3} \rightarrow B$ determined by the Boolean polynomial $p\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \vee\left(x_{2}^{\prime} \wedge x_{3}\right)\right)$.
22. (a) If L is a set accepted by a non-deterministic automaton, then prove that there exists a deterministic finite automaton that accepts L.
(b) If $G(T, N, P, \sigma)$ is a regular where $T=\{a, b\}, N=\{\sigma, A\}, \sigma$ is a starting symbol and $P=\{\sigma \rightarrow b \sigma, \sigma \rightarrow a A, A \rightarrow b A, A \rightarrow b\}$. Does there exist finite state automaton corresponding to G ?

hachachacha

