STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2019–20 & thereafter)

B. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : PRINCIPLES OF COMPLEX ANALYSIS

SUBJECT CODE : 19MT/MC/CA65

TIME : 3 HOURS MAX. MARKS : 100

SECTION-A

ANSWER ANY TEN QUESTIONS:

 $10 \times 2 = 20$

- 1. Define analytic function.
- 2. Under the mapping $w = e^z$, discuss the transformation of the line y = 0.
- 3. Find the value of z such that $e^z = 1 + \sqrt{3}i$.
- 4. Evaluate using Cauchy integral formula $\frac{1}{2\pi i} \int_{c}^{z^2+5} dz$ where C is |z| = 4.
- 5. Determine the angle of rotation and scale factor at the point z = 1 + i, under the mapping $w = z^2$.
- 6. Find the zeros of the following function $f(z) = \frac{z^3 1}{z^3 + 1}$.
- 7. State CR equations.
- 8. Define Harmonic function.
- 9. State Liouville's theorem.
- 10. State Maclaurin's series.
- 11. Define simple pole.
- 12. Define Removable singularity.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

 $5 \times 8 = 40$

- 13. Derive CR equations in polar coordinates.
- 14. State and prove the Cauchy Integral formula.

- 15. Find the linear fractional transformation that maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$ onto the points $w_1 = 1$, $w_2 = i$, $w_3 = -1$.
- 16. Find the series expansion of the function $f(z) = \frac{1+2z^2}{z^3+z^5}$.
- 17 State and prove Cauchy's residue theorem.
- 18 State and prove Rouche's theorem.
- Find the residue of $\frac{e^z}{z^2(z^2+9)}$ at its poles.

SECTION-C

ANSWER ANY TWO QUESTIONS:

 $2 \times 20 = 40$

- 20. (a) Derive the sufficient condition for differentiability of a complex function f(z).
 - (b) Find the poles of the function $f(z) = \cot z$.
- 21. Derive the mappings of the upper half plane.
- 22. (a) State and prove the maximum modulus theorem.
 - (b) Explain an application of conformal mapping briefly.

