STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086
(For candidates admitted from the academic year 2023 - 2024)
B. A DEGREE EXAMINATION, APRIL 2024

BRANCH IV - ECONOMICS

SECOND SEMESTER

COURSE	$:$ ALLIED CORE
PAPER	$:$ MATHEMATICAL METHODS FOR ECONOMICS
COURSE CODE	$:$ 23EC/AC/MM25
TIME	$: 3$ HOURS

Q. No.	SECTION-A PART - A Answer all TEN questions Each answer not to exceed 50 words. ($10 \times 2=20$)	CO	KL
1	Find the slope of the points (1, -2) and ($3,-6$).	1	1
2	Find the equation of the line passing through the points ($1,-1$) and (2, -4).	1	1
3	What is a Scalar Matrix?	1	1
4	Define Input-Output Analysis?	1	1
5	Find $\frac{d y}{d x}$ of $\mathrm{y}=e^{4 x^{2}}$.	1	1
6	Calculate the limit for $\lim _{x \rightarrow-4} 3 x^{2}+7 x-12$	1	1
7	If AC $=2 \mathrm{x}+1-\frac{5}{x}$, Find TC and MC.	1	1
8	Comment if the Matrix A $=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is singular or nonsingular?	1	1
9	If $\mathrm{Q}=0.6 \mathrm{~K}^{2}-3 \mathrm{KL}+\mathrm{L}^{2}$, Find MP_{L} and MP_{K}	1	1
10	Illustrate the shape of the Average Cost.	1	1
Q. No.	Part - B Answer any TEN questions. Each answer not to exceed 50 words. $(10 \times 2=20)$	CO	KL
11	Find the equilibrium price and quantity from the data given $Q_{s}=-20+3 P$ and $Q_{d}=220-5 P$	2	2
12	Solve for x from the following linear equation $36-4 x=7 x-34$	2	2
13	If $A=\left[\begin{array}{ll}6 & 7 \\ 2 & 3\end{array}\right] \quad B=\left[\begin{array}{cc}-6 & 2 \\ 4 & -8\end{array}\right]$, Find $A+B$.	2	2
14	State the meaning of a Quadratic Function with an example.	2	2

15	If $\mathrm{y}=\log 2 \mathrm{x}$, Find dy/dx.	2	2
16	Define Price Elasticity of Demand.	2	2
17	Find the MR function from the following Demand function $\mathrm{Q}=36-2 \mathrm{P}$.	2	2
18	Differentiate $\mathrm{y}=(7 \mathrm{x}+9)^{2}$	2	2
19	State Hawkins Simon Conditions.	2	2
20	Find the determinant of $\mathrm{A}=\left[\begin{array}{cc}18 & -1 \\ -2 & 36\end{array}\right]$	2	2
21	Find the distance of a point $\mathrm{P}(4,3)$ from the origin.	2	2
22	State any two properties of Parallel Lines.	2	2
Q. No.	$\begin{aligned} & \text { SECTION - B } \\ & \text { PART - A } \end{aligned}$ Answer any FOUR questions. Each answer not to exceed 250 words. $(4 \times 5=20)$	CO	KL
23	Optimize $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}-30 \mathrm{x}^{2}+126 \mathrm{x}+59$ and state whether the function is at a relative maximum or relative minimum.	3	3
24	Illustrate the Input-Output Transaction Matrix.	3	3
25	Prove Young's Theorem for $\mathrm{z}=\mathrm{x}^{0.3} \mathrm{y}^{0.5}$	3	3
26	Find the Inverse of the Matrix $A=\left[\begin{array}{lll}4 & 2 & 5 \\ 3 & 1 & 8 \\ 9 & 6 & 7\end{array}\right]$	3	3
27	Suppose the demand function for a certain good is given by $\mathrm{Q}=100-2 \mathrm{P}+0.5 \mathrm{I}-0.3 \mathrm{PC}$, where Q is the quantity demanded, P is the price of the good, I is income, and PC is the price of a related good. Find the income elasticity of demand $\left(\mathrm{E}_{\mathrm{I}}\right)$ for this good and calculate the cross elasticity of demand $\left(\mathrm{E}_{\mathrm{PC}}\right)$ with respect to the price of the related good.	3	3
28	Differentiate $y=\frac{18 x^{2}}{x^{2}-1}$	3	3

Q. No.	PART - B	CO	KL
	Answer any FOUR questions. Each answer not to exceed 250 words. $(4 \times 5=20)$		
29	Find the Minors and Cofactors of for the elements of the first row $A=\left[\begin{array}{ccc} 5 & 2 & -4 \\ 6 & -3 & 7 \\ 1 & 2 & 4 \end{array}\right]$	4	4
30	Solve by Cramer's Rule $\begin{aligned} & 2 x+4 y-z=52 \\ & -x+5 y+3 z=72 \\ & 3 x-7 y+2 z=10 \\ & \hline \end{aligned}$	4	4
31	Find $\frac{d y}{d x}$ for the function $7 x^{4}+3 x^{3} y+9 x y^{2}=280$	4	4
32	Given $\mathrm{Y}=\mathrm{C}+\mathrm{I}$, when $\mathrm{C}=89+0.8 \mathrm{Y}$ and $\mathrm{I}_{0}=24$, Find the Equilibrium Level of Income.	4	4
33	For $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})=6 \mathrm{x}^{3}+7 \mathrm{y}$ where $\mathrm{y}=\mathrm{g}(\mathrm{x})=4 \mathrm{x}^{2}+3 \mathrm{x}+8$, Find the total derivative $\frac{d z}{d x}$.	4	4
34	Derive the relationship when $\mathrm{AC}>\mathrm{MC}$.	4	4
Q. No.	SECTION - C Answer any TWO questions. Each answer not to exceed 600 words. $(2 \times 10=20)$	CO	KL
35	Given the following functions, $\mathrm{C}=100+0.8 \mathrm{Y}, \mathrm{I}=120-5 \mathrm{i}$, $\mathrm{M}_{\mathrm{s}}=120$, $\mathrm{M}_{\mathrm{d}}=0.2 \mathrm{Y}-5 i$, Find the equilibrium income and interest rate.	5	5
36	List any 5 properties of determinants with examples.	5	5
37	Calculate the maximum profit from the information provided $\mathrm{TR}=5900 \mathrm{Q}-10 \mathrm{Q}^{2}$ and $\mathrm{TC}=2 \mathrm{Q}^{3}-4 \mathrm{Q}^{2}+140 \mathrm{Q}+845$	5	5
38	Consider an economy with three sectors: Agriculture (A), Manufacturing (M), and Services (S). The input-output matrix representing the relationships between these sectors is given by: $\left[\begin{array}{c} A \\ S \\ M \end{array}\right]=\left[\begin{array}{lll} 0.3 & 0.2 & 0.1 \\ 0.4 & 0.5 & 0.3 \\ 0.3 & 0.3 & 0.6 \end{array}\right]$ Determine the total output generated by each sector when Rs. 500 worth of final output is produced.	5	5

