COURSE	$:$	MAJOR CORE
PAPER	$:$	QUANTUM CHEMISTRY AND GROUP THEORY
SUBJECT CODE	$:$	23CH/PC/QG24
TIME	$:$	3 HOURS

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	SECTION A (10 x $1=10$ marks) Answer ALL Questions	CO	KL
1	If $\left[\mathrm{x}, \mathrm{p}_{\mathrm{x}}\right]=\mathrm{i}(\mathrm{h} / 2 \pi)$, then $\left[\mathrm{x}^{2}, \mathrm{p}_{\mathrm{x}}\right]=$? a) $-\mathrm{i}(\mathrm{h} / 2 \pi)$ b) $i(h / 2 \pi)$ c) $i(h / 2 \pi) x$ d) $2 \mathrm{i}(\mathrm{h} / 2 \pi) \mathrm{x}$	1	1
2	The eigen value correspond to the operator $\mathrm{d}^{2} / \mathrm{dx}^{2}$ when acting on the function $3 \sin 4 \mathrm{x}$ is a) -48 b) 12 c) 48 d) -16	1	1
3	If the vibrational frequency of a diatomic molecule AB is $2 \mathrm{~cm}^{-1}$, then its zero point energy under the assumption that the molecule behaves as 1 D -simple harmonic oscillator is a) 2 hc b) hc c) $(1 / 2) \mathrm{hc}$ d) 4 hc	1	1
4	The quantum number which does not arise out of the solution of Schrodinger equation is a) n b) 1 c) m d) s	1	1
5	An sp^{2} hybrid orbital function of BF_{3} molecule is given as $\psi=(1 / \sqrt{ } 3) \phi_{2 \mathrm{~s}}-(1 / \sqrt{ } 6) \phi_{2 \mathrm{px}}+\mathrm{C}_{2} \phi_{2 \mathrm{py}}$, then the coefficient of C_{2} is a) $(1 / \sqrt{ } 2)$ b) $\sqrt{ } 2$ c) $1 / 2$ d) $-1 / 2$	1	1
6	Delocalization energy of 1,3 -cyclobutadiene as per Huckel MO theory is a) $2 \alpha+2 \beta$ b) $4 \alpha+4 \beta$ c) 0 d) 0.472β	1	1
7	Symmetry number of a molecule that belongs to $\mathrm{C}_{3 \mathrm{v}}$ point group is a) 1 b) 2 c) 3 d) 6	1	1
8	The number of reducible representations possible for $\mathrm{C}_{3 v}$ point group is a) 3 b) 6 c) 12 d) infinite	1	1
9	The ground vibrational state of a molecule belongs to $\mathrm{C}_{2 \mathrm{v}}$ point group has the symmetry species of a) A_{1} b) A_{2} c) B_{1} d) B_{2}	1	1
10	Number of irreducible representations of a point group is equal to a) Order of the group b) Number of classes in the group c) Number of rotation operations in the group d) Number of reflection operations in the group	1	1

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	SECTION - B ($10 \times 1=10$ marks) Answer ALL Questions	CO	KL
11	What are orthonormal functions?	2	2
12	The energy of a particle confined in a cubical box with infinite potential barrier outside is $14\left(\mathrm{~h}^{2} / 8 \mathrm{~mL}^{2}\right)$. Find the degree of degeneracy associated with this level.	2	2
13	Write the Schrodinger equation for one dimensional simple Harmonic oscillator.	2	2
14	Write the expression for first order correction to the energy of ground state of a system under time independent perturbation theory.	2	2
15	Write the Slater determinantal wave function for the ground state of Helium atom.	2	2
16	Give the point group of $\mathrm{C}_{6} \mathrm{H}_{6}$.	2	2
17	Find the point group of Methyl chloride.	2	2
18	 Is the above molecule possesses center of symmetry?	2	2
19	What is the symmetry selection rule for a vibrational transition to be active in IR?	2	2
20	Can we predict exact Hybridization of a molecule using symmetry properties?	2	2

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \\ \hline \end{array}$	SECTION C (4 x $6=24$ marks) ANSWER ANY FOUR QUESTIONS	CO	KL
21	Normalize the wave function $\psi=\mathrm{e}^{\mathrm{im} \mathrm{\phi}}$ in the range $0 \leq \phi \leq 2 \pi$.	3	3
22	Explain Radial probability distribution function.	3	3
23	Derive the expression for the wave functions of Hybrid orbitals of BF_{3} molecule.	3	3
24	Reduce the following reducible representation of C 2 v point group using reduction formula	3	3
25	$\mathrm{n} \rightarrow \pi^{*}$ transition is electric dipole forbidden transition but it appears in the spectrum with less intensity - Explain.	3	3

Q． No．	SECTION－D（4 x 8＝32 marks） ANSWER ANY FOUR QUESTIONS	CO	KL
26	a）Write the postulates of quantum mechanics．（5 marks） b）Two operators A and B commute with each other．What do you infer （3 marks）	4	4
27	Dem the statement？ rigid rotor in three dimensions．	4	4
28	Derive the expression for wave function and energy of Hydrogen molecular ion using LCAO－MO theory．	4	4
29	Construct the character table for C3v point group．	4	4
30	Find the symmetry species correspond to the Hybrid orbitals of ammonia molecule．	4	4

Q．No．	SECTION－E（ 2×12＝ 24 marks） ANSWER ALL QUESTIONS	CO	KL
31 a	（i）An electron is confined in a nanowire of length of $15 \AA$ ，calculate the energy of the electron in its first excited state（in eV）．（Given： The nanowire can be treated as 1 D box） （5 marks） （ii）Find the symmetry species correspond to the normal modes of trans－ $\mathrm{N}_{2} \mathrm{~F}_{2}$ molecule and also predict the IR active and Raman active modes among them． （7 marks） （or） （i）An electron in confined to move on a ring of constant radius．If the radius of the ring is $50 \AA$ ，calculate the energy of the electron in the $2^{\text {nd }}$ excited level（in eV ）． （5 marks） （ii）Derive the expression for the wavefunction and energy of a particle confined in a cubical box．	5	5
32 a	（i）What is the need for HF－SCF method？ （ii）Explain Hartree＇s Self consisten field method． （iii）Explain Fock＇s modification of Hartree＇s SCF procedure． （iv）What is the limitation of HF－SCF method． （v）How will you calculate correlation energy from HF－SCF treatment？ （or） （i）Derive the expression for delocalization energy of 1，3－butadiene using HMO Theory．（6 marks） （ii）State＂The Great Orthogonality Theorem＂．Explain the features extracted from this theorem．（6 marks）	5	5

人人人人人八人人

