STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted from the academic year 2023 – 2024)

M. Sc. DEGREE EXAMINATION, APRIL 2024 BRANCH IV- CHEMISTRY SECOND SEMESTER

COURSE	:	MAJOR CORE	
PAPER	:	QUANTUM CHEMIS	TRY AND GROUP THEORY
SUBJECT CODE	:	23CH/PC/QG24	
TIME	:	3 HOURS	MAX. MARKS: 100

Q. No.	SECTION A (10 x 1 = 10 marks) Answer ALL Questions	со	KL	
1	If $[x,p_x] = i(h/2\pi)$, then $[x^2,p_x] = ?$	1	1	
	a) $-i(h/2\pi)$ b) $i(h/2\pi)$ c) $i(h/2\pi)x$ d) $2 i(h/2\pi)x$	1	1	
2	The eigen value correspond to the operator d^2/dx^2 when acting on the	e		
	function 3sin4x is	1	1	
	a) -48 b) 12 c) 48 d) -16			
3	If the vibrational frequency of a diatomic molecule AB is			
	2 cm^{-1} , then its zero point energy under the assumption that the molecule	1	1	
	behaves as 1D-simple harmonic oscillator is	1	1	
	a) $2 hc$ b) hc c) $(1/2) hc$ d) $4 hc$			
4	The quantum number which does not arise out of the solution of			
	Schrodinger equation is	1	1	
	a) n b) l c) m d) s			
5	An sp^2 hybrid orbital function of BF ₃ molecule is given as			
	$\psi = (1/\sqrt{3}) \phi_{2s} - (1/\sqrt{6}) \phi_{2px} + C_2 \phi_{2py}$, then the coefficient of C ₂ is	1	1	
	a) $(1/\sqrt{2})$ b) $\sqrt{2}$ c) $1/2$ d) $-1/2$			
6	Delocalization energy of 1,3-cyclobutadiene as per Huckel MO theory is	1	1	
	a) $2\alpha + 2\beta$ b) $4\alpha + 4\beta$ c) 0 d) 0.472β			
7	Symmetry number of a molecule that belongs to C_{3v} point group is	1	1	
	a) 1 b) 2 c) 3 d) 6			
8	The number of reducible representations possible for C_{3v} point group is	1	1	
	a) 3 b) 6 c) 12 d) infinite			
9	The ground vibrational state of a molecule belongs to C_{2v} point group has			
	the symmetry species of	1	1	
10	a) A_1 b) A_2 c) B_1 d) B_2			
10	Number of irreducible representations of a point group is equal to			
	a) Order of the groupb) Number of closes in the group	1	1	
	b) Number of classes in the group			
	 c) Number of rotation operations in the group d) Number of roffs ation constitutions in the summer 			
	d) Number of reflection operations in the group			

Q. No.	SECTION – B (10 x 1 = 10 marks) Answer ALL Questions	СО	KL
11	What are orthonormal functions?	2	2
12	The energy of a particle confined in a cubical box with infinite potential		
	barrier outside is 14 ($h^2/8mL^2$). Find the degree of degeneracy associated	2	2
	with this level.		
13	Write the Schrodinger equation for one dimensional simple Harmonic	2	2
	oscillator.	2	2
14	Write the expression for first order correction to the energy of ground	2	2
	state of a system under time independent perturbation theory.	2	2
15	Write the Slater determinantal wave function for the ground state of	2	2
	Helium atom.	2	2
16	Give the point group of C_6H_6 .	2	2
17	Find the point group of Methyl chloride.	2	2
18	CH ₃		
	Br ————H		
	H——Br	2	2
	CH ₃		
	Is the above molecule possesses center of symmetry?		
19	What is the symmetry selection rule for a vibrational transition to be	2	2
	active in IR?	2	2
20	Can we predict exact Hybridization of a molecule using symmetry	2	2
	properties?	2	2

Q. No.	SECTION C (4 x 6 = 24 marks) ANSWER ANY FOUR QUESTIONS	СО	KL
21	Normalize the wave function $\psi = e^{im\phi}$ in the range $0 \le \phi \le 2\pi$.	3	3
22	Explain Radial probability distribution function.	3	3
23	Derive the expression for the wave functions of Hybrid orbitals of BF ₃ molecule.	3	3
24	Reduce the following reducible representation of C2v point groupusing reduction formula $C2v$ E C_{2z} $\sigma_v(yz)$ $ -$ <td< td=""><td>3</td><td>3</td></td<>	3	3
25	n →π [*] transition is electric dipole forbidden transition but it appears in the spectrum with less intensity – Explain.	3	3

Q. No.	SECTION – D (4 x 8 = 32 marks) ANSWER ANY FOUR QUESTIONS	СО	KL
26	a) Write the postulates of quantum mechanics.(5 marks)b) Two operators A and B commute with each other.What do you inferfrom the statement?(3 marks)	4	4
27	Derive the expression for energy Eigen value of a diatomic molecular rigid rotor in three dimensions.	4	4
28	Derive the expression for wave function and energy of Hydrogen molecular ion using LCAO-MO theory.	4	4
29	Construct the character table for C_{3v} point group.	4	4
30	Find the symmetry species correspond to the Hybrid orbitals of ammonia molecule.	4	4

Q. No.	SECTION – E (2 x 12 = 24 marks) ANSWER ALL QUESTIONS	СО	KL
31 a	 (i) An electron is confined in a nanowire of length of 15 Å, calculate the energy of the electron in its first excited state (in eV). (Given: The nanowire can be treated as 1D box) (5 marks) (ii) Find the symmetry species correspond to the normal modes of trans-N₂F₂ molecule and also predict the IR active and Raman active modes among them. (7 marks) 		
	(or)	5	5
31	 (i) An electron in confined to move on a ring of constant radius. If the radius of the ring is 50Å, calculate the energy of the electron in the 2nd excited level (in eV). (5 marks) (ii) Derive the expression for the wavefunction and energy of a particle confined in a cubical box. (7 mark) 		
32 a	 (i) What is the need for HF-SCF method? (ii) Explain Hartree's Self consisten field method. (iii) Explain Fock's modification of Hartree's SCF procedure. (iv) What is the limitation of HF-SCF method. (v) How will you calculate correlation energy from HF-SCF treatment? 	5	5
32	 (i) Derive the expression for delocalization energy of 1,3-butadiene using HMO Theory. (6 marks) (ii) State "The Great Orthogonality Theorem". Explain the features extracted from this theorem. (6 marks) 		